forked from neurodebian/spm8
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspm_DEM_diff.m
132 lines (114 loc) · 4.31 KB
/
spm_DEM_diff.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
function [u dg df] = spm_DEM_diff(M,u)
% evaluates an active model given innovations z{i} and w{i}
% FORMAT [u dgdv dgdx dfdv dfdx] = spm_ADEM_diff(M,u);
%
% M - generative model
%
% u.v - causal states - updated
% u.x - hidden states - updated
% u.z - innovation (causal state)
% u.w - innovation (hidden states)
% u.a - [active states]
%
% dg.dv, ... components of the Jacobian in generalised coordinates
%
% The system is evaluated at the prior expectation of the parameters
%__________________________________________________________________________
% Copyright (C) 2005 Wellcome Department of Imaging Neuroscience
% Karl Friston
% $Id: spm_DEM_diff.m 3655 2009-12-23 20:15:34Z karl $
% Check for action (ADEM)
%==========================================================================
try
M.a;
ADEM = 1;
catch
u.a = u.v;
[M(:).a] = deal(sparse(0,1));
[M(:).k] = deal(0);
[u.a{:}] = deal(sparse(0,1));
ADEM = 0;
end
% number of states and parameters
%==========================================================================
nl = size(M,2); % number of levels
nv = sum(spm_vec(M.l)); % number of v (causal states)
na = sum(spm_vec(M.k)); % number of a (active states)
nx = sum(spm_vec(M.n)); % number of x (hidden states)
% order parameters (n = 1 for static models)
%--------------------------------------------------------------------------
n = M(1).E.n + 1; % order of embedding
% initialise arrays for hierarchical form
%--------------------------------------------------------------------------
dfdvi = cell(nl,nl);
dfdxi = cell(nl,nl);
dfdai = cell(nl,nl);
dgdvi = cell(nl,nl);
dgdxi = cell(nl,nl);
dgdai = cell(nl,nl);
for i = 1:nl
dgdvi{i,i} = sparse(M(i).l,M(i).l);
dgdxi{i,i} = sparse(M(i).l,M(i).n);
dgdai{i,i} = sparse(M(i).l,M(i).k);
dfdvi{i,i} = sparse(M(i).n,M(i).l);
dfdxi{i,i} = sparse(M(i).n,M(i).n);
dfdai{i,i} = sparse(M(i).n,M(i).k);
end
% partition states {x,v,z,w} into distinct vector arrays v{i}, ...
%--------------------------------------------------------------------------
vi = spm_unvec(u.v{1},{M.v});
xi = spm_unvec(u.x{1},{M.x});
ai = spm_unvec(u.a{1},{M.a});
zi = spm_unvec(u.z{1},{M.v});
wi = spm_unvec(u.w{1},{M.x});
% Derivatives for Jacobian
%==========================================================================
vi{nl} = zi{nl};
for i = (nl - 1):-1:1
% evaluate
%----------------------------------------------------------------------
if ADEM
[dgdx g] = spm_diff(M(i).g,xi{i},vi{i + 1},ai{i + 1},M(i).pE,1);
[dfdx f] = spm_diff(M(i).f,xi{i},vi{i + 1},ai{i + 1},M(i).pE,1);
dgdv = spm_diff(M(i).g,xi{i},vi{i + 1},ai{i + 1},M(i).pE,2);
dfdv = spm_diff(M(i).f,xi{i},vi{i + 1},ai{i + 1},M(i).pE,2);
dgda = spm_diff(M(i).g,xi{i},vi{i + 1},ai{i + 1},M(i).pE,3);
dfda = spm_diff(M(i).f,xi{i},vi{i + 1},ai{i + 1},M(i).pE,3);
else
[dgdx g] = spm_diff(M(i).g,xi{i},vi{i + 1},M(i).pE,1);
[dfdx f] = spm_diff(M(i).f,xi{i},vi{i + 1},M(i).pE,1);
dgdv = spm_diff(M(i).g,xi{i},vi{i + 1},M(i).pE,2);
dfdv = spm_diff(M(i).f,xi{i},vi{i + 1},M(i).pE,2);
dgda = [];
dfda = [];
end
% g(x,v) & f(x,v)
%----------------------------------------------------------------------
gi{i} = g;
fi{i} = f;
vi{i} = spm_vec(gi{i}) + spm_vec(zi{i});
% and partial derivatives
%----------------------------------------------------------------------
dgdxi{i, i} = dgdx;
dgdvi{i,i + 1} = dgdv;
dgdai{i,i + 1} = dgda;
dfdxi{i, i} = dfdx;
dfdvi{i,i + 1} = dfdv;
dfdai{i,i + 1} = dfda;
end
% concatenate hierarchical arrays
%--------------------------------------------------------------------------
dg.da = spm_cat(dgdai);
dg.dv = spm_cat(dgdvi);
dg.dx = spm_cat(dgdxi);
df.da = spm_cat(dfdai);
df.dv = spm_cat(dfdvi);
df.dx = spm_cat(dfdxi);
% update generalised coordinates
%--------------------------------------------------------------------------
u.v{1} = spm_vec(vi);
u.x{2} = spm_vec(fi) + u.w{1};
for i = 2:(n - 1)
u.v{i} = dg.dv*u.v{i} + dg.dx*u.x{i} + dg.da*u.a{i} + u.z{i};
u.x{i + 1} = df.dv*u.v{i} + df.dx*u.x{i} + df.da*u.a{i} + u.w{i};
end