forked from neurodebian/spm8
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspm_Fcdf.m
117 lines (108 loc) · 4.17 KB
/
spm_Fcdf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
function F = spm_Fcdf(x,v,w)
% Cumulative Distribution Function (CDF) of F (Fisher-Snedecor) distribution
% FORMAT F = spm_Fpdf(x,df)
% FORMAT F = spm_Fpdf(x,v,w)
%
% x - F-variate (F has range [0,Inf) )
% df - Degrees of freedom, concatenated along last dimension
% Eg. Scalar (or column vector) v & w. Then df=[v,w];
% v - Shape parameter 1 / numerator degrees of freedom (v>0)
% w - Shape parameter 2 / denominator degrees of freedom (w>0)
% F - CDF of F-distribution with [v,w] degrees of freedom at points x
%_______________________________________________________________________
%
% spm_Fcdf implements the Cumulative Distribution Function of the F-distribution.
%
% Definition:
%-----------------------------------------------------------------------
% The CDF F(x) of the F distribution with degrees of freedom v & w,
% defined for positive integer degrees of freedom v & w, is the
% probability that a realisation of an F random variable X has value
% less than x F(x)=Pr{X<x} for X~F(v,w). The F-distribution is defined
% for v>0 & w>0, and for x in [0,Inf) (See Evans et al., Ch16).
%
% Variate relationships: (Evans et al., Ch16 & 37)
%-----------------------------------------------------------------------
% The square of a Student's t variate with w degrees of freedom is
% distributed as an F-distribution with [1,w] degrees of freedom.
%
% For X an F-variate with v,w degrees of freedom, w/(w+v*X^2) has
% distributed related to a Beta random variable with shape parameters
% w/2 & v/2.
%
% Algorithm:
%-----------------------------------------------------------------------
% Using the relationship with the Beta distribution: The CDF of the
% F-distribution with v,w degrees of freedom is related to the
% incomplete beta function by:
% Pr(X<x) = 1 - betainc(w/(w+v*x^2),w/2,v/2)
% See Abramowitz & Stegun, 26.6.2; Press et al., Sec6.4 for
% definitions of the incomplete beta function. The relationship is
% easily verified by substituting for w/(w+v*x^2) in the integral of the
% incomplete beta function.
%
% MatLab's implementation of the incomplete beta function is used.
%
%
% References:
%-----------------------------------------------------------------------
% Evans M, Hastings N, Peacock B (1993)
% "Statistical Distributions"
% 2nd Ed. Wiley, New York
%
% Abramowitz M, Stegun IA, (1964)
% "Handbook of Mathematical Functions"
% US Government Printing Office
%
% Press WH, Teukolsky SA, Vetterling AT, Flannery BP (1992)
% "Numerical Recipes in C"
% Cambridge
%
%__________________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Andrew Holmes
% $Id: spm_Fcdf.m 1143 2008-02-07 19:33:33Z spm $
%-Format arguments, note & check sizes
%-----------------------------------------------------------------------
if nargin<2, error('Insufficient arguments'), end
%-Unpack degrees of freedom v & w from single df parameter (v)
if nargin<3
vs = size(v);
if prod(vs)==2
%-DF is a 2-vector
w = v(2); v = v(1);
elseif vs(end)==2
%-DF has last dimension 2 - unpack v & w
nv = prod(vs);
w = reshape(v(nv/2+1:nv),vs(1:end-1));
v = reshape(v(1:nv/2) ,vs(1:end-1));
else
error('Can''t unpack both df components from single argument')
end
end
%-Check argument sizes
ad = [ndims(x);ndims(v);ndims(w)];
rd = max(ad);
as = [ [size(x),ones(1,rd-ad(1))];...
[size(v),ones(1,rd-ad(2))];...
[size(w),ones(1,rd-ad(3))] ];
rs = max(as);
xa = prod(as,2)>1;
if sum(xa)>1 & any(any(diff(as(xa,:)),1))
error('non-scalar args must match in size'), end
%-Computation
%-----------------------------------------------------------------------
%-Initialise result to zeros
F = zeros(rs);
%-Only defined for strictly positive v & w. Return NaN if undefined.
md = ( ones(size(x)) & v>0 & w>0 );
if any(~md(:)), F(~md) = NaN;
warning('Returning NaN for out of range arguments'), end
%-Non-zero where defined and x>0
Q = find( md & x>0 );
if isempty(Q), return, end
if xa(1), Qx=Q; else Qx=1; end
if xa(2), Qv=Q; else Qv=1; end
if xa(3), Qw=Q; else Qw=1; end
%-Compute
F(Q) = 1 - betainc(w(Qw)./(w(Qw) + v(Qv).*x(Qx)),w(Qw)/2,v(Qv)/2);