Skip to content

Commit

Permalink
Minor enhancements to custom LDLT implementations (#489)
Browse files Browse the repository at this point in the history
This change is in support of PIC.
  • Loading branch information
peddie authored Aug 2, 2024
1 parent 7e27b1f commit 877be3a
Show file tree
Hide file tree
Showing 2 changed files with 101 additions and 17 deletions.
15 changes: 12 additions & 3 deletions include/albatross/src/eigen/serializable_ldlt.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,10 @@ namespace Eigen {
// See LDLT.h in Eigen for a detailed description of the decomposition
class SerializableLDLT : public LDLT<MatrixXd, Lower> {
public:
using RealScalar = double;
using Scalar = double;
using MatrixType = MatrixXd;

SerializableLDLT() : LDLT<MatrixXd, Lower>(){};

SerializableLDLT(const MatrixXd &x) : LDLT<MatrixXd, Lower>(x.ldlt()){};
Expand All @@ -43,6 +47,11 @@ class SerializableLDLT : public LDLT<MatrixXd, Lower> {

bool is_initialized() const { return this->m_isInitialized; }

double l1_norm() const {
ALBATROSS_ASSERT(is_initialized() && "Must initialize first!");
return this->m_l1_norm;
}

/*
* Computes the inverse of the square root of the diagonal, D^{-1/2}
*/
Expand Down Expand Up @@ -88,10 +97,10 @@ class SerializableLDLT : public LDLT<MatrixXd, Lower> {
* Computes the product of the square root of A with rhs,
* D^{-1/2} L^-1 P rhs
*/
template <class Rhs>
Eigen::MatrixXd sqrt_solve(const MatrixBase<Rhs> &rhs) const {
template <class Rhs> Eigen::MatrixXd sqrt_solve(const Rhs &rhs) const {
return diagonal_sqrt_inverse() *
this->matrixL().solve(this->transpositionsP() * rhs);
this->matrixL().solve(this->transpositionsP() *
Eigen::MatrixXd(rhs));
}

Eigen::MatrixXd sqrt_transpose() const {
Expand Down
103 changes: 89 additions & 14 deletions include/albatross/src/linalg/block_diagonal.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -22,30 +22,49 @@ struct BlockDiagonalLDLT;
struct BlockDiagonal;

struct BlockDiagonalLDLT {
using RealScalar = Eigen::SerializableLDLT::RealScalar;
using Scalar = Eigen::SerializableLDLT::Scalar;
using MatrixType = Eigen::SerializableLDLT::MatrixType;
std::vector<Eigen::SerializableLDLT> blocks;

template <class _Scalar, int _Rows, int _Cols>
Eigen::Matrix<_Scalar, _Rows, _Cols>
solve(const Eigen::Matrix<_Scalar, _Rows, _Cols> &rhs) const;
template <typename Derived>
inline Eigen::MatrixXd solve(const Eigen::MatrixBase<Derived> &rhs) const;

template <class _Scalar, int _Rows, int _Cols>
Eigen::Matrix<_Scalar, _Rows, _Cols>
sqrt_solve(const Eigen::Matrix<_Scalar, _Rows, _Cols> &rhs) const;
template <typename Derived>
inline Eigen::MatrixXd
sqrt_solve(const Eigen::MatrixBase<Derived> &rhs) const;

template <class _Scalar, int _Options, typename _StorageIndex>
Eigen::Matrix<_Scalar, Eigen::Dynamic, Eigen::Dynamic>
solve(const Eigen::SparseMatrix<_Scalar, _Options, _StorageIndex> &rhs) const;

template <class _Scalar, int _Options, typename _StorageIndex>
Eigen::Matrix<_Scalar, Eigen::Dynamic, Eigen::Dynamic> sqrt_solve(
const Eigen::SparseMatrix<_Scalar, _Options, _StorageIndex> &rhs) const;

template <class _Scalar, int _Rows, int _Cols>
Eigen::Matrix<_Scalar, _Rows, _Cols>
solve(const Eigen::Matrix<_Scalar, _Rows, _Cols> &rhs,
ThreadPool *pool) const;

template <typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
inline Eigen::MatrixXd
solve(const Eigen::Block<XprType, BlockRows, BlockCols, InnerPanel> &rhs_orig)
const;

template <class _Scalar, int _Rows, int _Cols>
Eigen::Matrix<_Scalar, _Rows, _Cols>
sqrt_solve(const Eigen::Matrix<_Scalar, _Rows, _Cols> &rhs,
ThreadPool *pool) const;

const BlockDiagonalLDLT &adjoint() const;

std::map<size_t, Eigen::Index> block_to_row_map() const;

double log_determinant() const;

double rcond() const;

Eigen::Index rows() const;

Eigen::Index cols() const;
Expand Down Expand Up @@ -74,12 +93,12 @@ struct BlockDiagonal {
/*
* BlockDiagonalLDLT
*/
template <class _Scalar, int _Rows, int _Cols>
inline Eigen::Matrix<_Scalar, _Rows, _Cols> BlockDiagonalLDLT::solve(
const Eigen::Matrix<_Scalar, _Rows, _Cols> &rhs) const {
template <typename Derived>
inline Eigen::MatrixXd
BlockDiagonalLDLT::solve(const Eigen::MatrixBase<Derived> &rhs) const {
ALBATROSS_ASSERT(cols() == rhs.rows());
Eigen::Index i = 0;
Eigen::Matrix<_Scalar, _Rows, _Cols> output(rows(), rhs.cols());
Eigen::MatrixXd output(rows(), rhs.cols());
for (const auto &b : blocks) {
const auto rhs_chunk = rhs.block(i, 0, b.rows(), rhs.cols());
output.block(i, 0, b.rows(), rhs.cols()) = b.solve(rhs_chunk);
Expand All @@ -88,12 +107,53 @@ inline Eigen::Matrix<_Scalar, _Rows, _Cols> BlockDiagonalLDLT::solve(
return output;
}

template <class _Scalar, int _Rows, int _Cols>
inline Eigen::Matrix<_Scalar, _Rows, _Cols> BlockDiagonalLDLT::sqrt_solve(
const Eigen::Matrix<_Scalar, _Rows, _Cols> &rhs) const {
template <typename Derived>
inline Eigen::MatrixXd
BlockDiagonalLDLT::sqrt_solve(const Eigen::MatrixBase<Derived> &rhs) const {
ALBATROSS_ASSERT(cols() == rhs.rows());
Eigen::Index i = 0;
Eigen::Matrix<_Scalar, _Rows, _Cols> output(rows(), rhs.cols());
Eigen::MatrixXd output(rows(), rhs.cols());
for (const auto &b : blocks) {
const auto rhs_chunk = rhs.block(i, 0, b.rows(), rhs.cols());
output.block(i, 0, b.rows(), rhs.cols()) = b.sqrt_solve(rhs_chunk);
i += b.rows();
}
return output;
}

template <class _Scalar, int _Options, typename _StorageIndex>
inline Eigen::Matrix<_Scalar, Eigen::Dynamic, Eigen::Dynamic>
BlockDiagonalLDLT::solve(
const Eigen::SparseMatrix<_Scalar, _Options, _StorageIndex> &rhs) const {
ALBATROSS_ASSERT(cols() == rhs.rows());
Eigen::Index i = 0;
Eigen::Matrix<_Scalar, Eigen::Dynamic, Eigen::Dynamic> output(rows(),
rhs.cols());
for (const auto &b : blocks) {
const auto rhs_chunk = rhs.block(i, 0, b.rows(), rhs.cols());
output.block(i, 0, b.rows(), rhs.cols()) = b.solve(rhs_chunk);
i += b.rows();
}
return output;
}

template <typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
inline Eigen::MatrixXd BlockDiagonalLDLT::solve(
const Eigen::Block<XprType, BlockRows, BlockCols, InnerPanel> &rhs_orig)
const {
ALBATROSS_ASSERT(cols() == rhs_orig.rows());
Eigen::MatrixXd rhs{rhs_orig};
return solve(rhs);
}

template <class _Scalar, int _Options, typename _StorageIndex>
inline Eigen::Matrix<_Scalar, Eigen::Dynamic, Eigen::Dynamic>
BlockDiagonalLDLT::sqrt_solve(
const Eigen::SparseMatrix<_Scalar, _Options, _StorageIndex> &rhs) const {
ALBATROSS_ASSERT(cols() == rhs.rows());
Eigen::Index i = 0;
Eigen::Matrix<_Scalar, Eigen::Dynamic, Eigen::Dynamic> output(rows(),
rhs.cols());
for (const auto &b : blocks) {
const auto rhs_chunk = rhs.block(i, 0, b.rows(), rhs.cols());
output.block(i, 0, b.rows(), rhs.cols()) = b.sqrt_solve(rhs_chunk);
Expand Down Expand Up @@ -157,6 +217,17 @@ inline double BlockDiagonalLDLT::log_determinant() const {
return output;
}

inline double BlockDiagonalLDLT::rcond() const {
// L1 induced norm is just the maximum absolute column sum.
// Therefore the L1 induced norm of a block-diagonal matrix is the
// maximum of the L1 induced norms of the individual blocks.
double l1_norm = -INFINITY;
for (const auto &b : blocks) {
l1_norm = std::max(l1_norm, b.l1_norm());
}
return Eigen::internal::rcond_estimate_helper(l1_norm, *this);
}

inline Eigen::Index BlockDiagonalLDLT::rows() const {
Eigen::Index n = 0;
for (const auto &b : blocks) {
Expand All @@ -173,6 +244,10 @@ inline Eigen::Index BlockDiagonalLDLT::cols() const {
return n;
}

inline const BlockDiagonalLDLT &BlockDiagonalLDLT::adjoint() const {
return *this;
}

/*
* Block Diagonal
*/
Expand Down

0 comments on commit 877be3a

Please sign in to comment.