-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
57 lines (47 loc) · 2.28 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import matplotlib
import cv2
edges = [
(0, 1), (0, 2), (2, 4), (1, 3), (6, 8), (8, 10),
(5, 7), (7, 9), (5, 11), (11, 13), (13, 15), (6, 12),
(12, 14), (14, 16), (5, 6)
]
def draw_keypoints(outputs, image):
"""Draw the keypoints on the image from the output of the model.
Keypoints mean the coordinates of the joints of the human body. The coordinates are normalized to the image size.
Args:
outputs (dict): The output of the model.
image (numpy.ndarray): The image to draw the keypoints.
Returns:
numpy.ndarray: The image with the keypoints."""
for i in range(len(outputs[0]['keypoints'])):
keypoints = outputs[0]['keypoints'][i].cpu().detach().numpy()
if outputs[0]['scores'][i] > 0.9:
keypoints = keypoints[:, :].reshape(-1, 3)
for p in range(keypoints.shape[0]):
cv2.circle(image, (int(keypoints[p, 0]), int(keypoints[p, 1])), 3, (255, 0, 0), thickness=-1, lineType=cv2.FILLED)
for ie, e in enumerate(edges):
rgb = matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])
rgb = rgb*255
pt1 = (int(keypoints[e, 0][0]), int(keypoints[e, 1][0]))
pt2 = (int(keypoints[e, 0][1]), int(keypoints[e, 1][1]))
cv2.line(image, pt1, pt2, tuple(rgb), 2, lineType=cv2.LINE_AA)
else:
continue
return image
def get_keypoints(outputs, image, threshold=0.9):
"""Get keypoints from the output of the model. If the score is lower than the threshold, return None.
Keypoints mean the coordinates of the joints of the human body. The coordinates are normalized to the image size.
Args:
outputs (dict): The output of the model.
image (numpy.ndarray): The image to draw the keypoints.
threshold (float): The threshold of the score. If the score is lower than the threshold, return None.
Returns:
numpy.ndarray: The keypoints of the human body."""
for i in range(len(outputs[0]['keypoints'])):
keypoints = outputs[0]['keypoints'][i].cpu().detach().numpy()
if outputs[0]['scores'][i] > threshold:
keypoints = keypoints[:, :].reshape(-1, 3)
return keypoints
else:
continue
return None