-
Notifications
You must be signed in to change notification settings - Fork 16
/
run_sdae.py
153 lines (131 loc) · 5.79 KB
/
run_sdae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from datetime import datetime
import json
from logging import basicConfig, getLogger, StreamHandler, DEBUG, WARNING
import os
import sys
from typing import Any, Dict, List
import numpy as np
import pandas as pd
from sklearn.metrics import (
accuracy_score,
confusion_matrix,
f1_score,
log_loss,
precision_score,
recall_score,
)
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import MinMaxScaler
from tensorflow import keras
from src.data_prep.load import load_raw_data
from src.utils import check_class_balance, round
from src.utils import plot_feature_importance, plot_shap_summary, plot_confusion_matrix
from models.sdae import SDAE
CUR_DIR = os.path.dirname(os.path.abspath(__file__)) # Path to current directory
# Logging settings
EXEC_TIME = "sdae-" + datetime.now().strftime("%Y%m%d-%H%M%S")
LOG_DIR = os.path.join(CUR_DIR, f"logs/{EXEC_TIME}")
os.makedirs(LOG_DIR, exist_ok=True) # Create log directory
formatter = "%(levelname)s: %(asctime)s: %(filename)s: %(funcName)s: %(message)s"
basicConfig(filename=f"{LOG_DIR}/{EXEC_TIME}.log", level=DEBUG, format=formatter)
mpl_logger = getLogger("matplotlib") # Suppress matplotlib logging
mpl_logger.setLevel(WARNING)
# Handle logging to both logging and stdout.
getLogger().addHandler(StreamHandler(sys.stdout))
logger = getLogger(__name__)
logger.setLevel(DEBUG)
logger.debug(f"{LOG_DIR}/{EXEC_TIME}.log")
X_train, X_test, y_train, y_test, label2act, act2label = load_raw_data(scaler="minmax")
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1] * X_train.shape[2])
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1] * X_test.shape[2])
logger.debug(f"{X_train.shape=} {X_test.shape=}")
logger.debug(f"{y_train.shape=} {y_test.shape=}")
check_class_balance(y_train.flatten(), y_test.flatten(), label2act=label2act)
# Split data by preserving the percentage of samples for each class.
n_splits = 5
cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=71)
valid_preds = np.zeros((X_train.shape[0], 6))
test_preds = np.zeros((n_splits, X_test.shape[0], 6))
models = []
scores: Dict[str, Dict[str, List[Any]]] = {
"logloss": {"train": [], "valid": [], "test": []},
"accuracy": {"train": [], "valid": [], "test": []},
"precision": {"train": [], "valid": [], "test": []},
"recall": {"train": [], "valid": [], "test": []},
"f1": {"train": [], "valid": [], "test": []},
"cm": {"train": [], "valid": [], "test": []},
"per_class_f1": {"train": [], "valid": [], "test": []},
}
# Load hyper-parameters
with open(os.path.join(CUR_DIR, "configs/default.json"), "r") as f:
sdae_params = json.load(f)["sdae_params"]
logger.debug(f"{sdae_params=}")
y_test = keras.utils.to_categorical(y_test, 6)
for fold_id, (train_index, valid_index) in enumerate(cv.split(X_train, y_train)):
X_tr = X_train[train_index, :]
X_val = X_train[valid_index, :]
y_tr = y_train[train_index]
y_val = y_train[valid_index]
y_tr = keras.utils.to_categorical(y_tr, 6)
y_val = keras.utils.to_categorical(y_val, 6)
logger.debug(f"{X_tr.shape=} {X_val.shape=} {X_test.shape=}")
logger.debug(f"{y_tr.shape=} {y_val.shape=} {y_test.shape=}")
sdae = SDAE(LOG_DIR=LOG_DIR, fold_id=fold_id, **sdae_params)
pred_tr, pred_val = sdae.train_1st_level(X_tr, X_val)
_, _ = sdae.train_2nd_level(pred_tr, pred_val)
pred_tr, pred_val, pred_test, model = sdae.finetune(X_tr, X_val, X_test, y_tr, y_val)
models.append(model)
valid_preds[valid_index] = pred_val
test_preds[fold_id] = pred_test
for pred, X, y, mode in zip(
[pred_tr, pred_val, pred_test],
[X_tr, X_val, X_test],
[y_tr, y_val, y_test],
["train", "valid", "test"],
):
loss, acc = model.evaluate(X, y, verbose=0)
pred = pred.argmax(axis=1)
y = y.argmax(axis=1)
scores["logloss"][mode].append(loss)
scores["accuracy"][mode].append(acc)
scores["precision"][mode].append(precision_score(y, pred, average="macro"))
scores["recall"][mode].append(recall_score(y, pred, average="macro"))
scores["f1"][mode].append(f1_score(y, pred, average="macro"))
scores["cm"][mode].append(confusion_matrix(y, pred, normalize="true"))
scores["per_class_f1"][mode].append(f1_score(y, pred, average=None))
# Output Cross Validation Scores
logger.debug("---Cross Validation Scores---")
for mode in ["train", "valid", "test"]:
logger.debug(f"---{mode}---")
for metric in ["logloss", "accuracy", "precision", "recall", "f1"]:
logger.debug(f"{metric}={round(np.mean(scores[metric][mode]))}")
class_f1_mat = scores["per_class_f1"][mode]
class_f1_result = {}
for class_id in range(6):
mean_class_f1 = np.mean([class_f1_mat[i][class_id] for i in range(n_splits)])
class_f1_result[label2act[class_id]] = mean_class_f1
logger.debug(f"per-class f1={round(class_f1_result)}")
# Output Final Scores Averaged over Folds
logger.debug("---Final Test Scores Averaged over Folds---")
test_pred = np.mean(test_preds, axis=0).argmax(axis=1) # average over folds
y_test = y_test.argmax(axis=1)
logger.debug(f"accuracy={accuracy_score(y_test, test_pred)}")
logger.debug(f"precision={precision_score(y_test, test_pred, average='macro')}")
logger.debug(f"recall={recall_score(y_test, test_pred, average='macro')}")
logger.debug(f"f1={f1_score(y_test, test_pred, average='macro')}")
logger.debug(f"per-class f1={f1_score(y_test, test_pred, average=None)}")
# Plot comfusion matrix
plot_confusion_matrix(
cms=scores["cm"],
labels=[
"LAYING",
"WALKING",
"WALKING_UPSTAIRS",
"WALKING_DOWNSTAIRS",
"SITTING",
"STANDING",
],
path=f"{LOG_DIR}/comfusion_matrix.png",
)
np.save(f"{LOG_DIR}/valid_oof.npy", valid_preds)
np.save(f"{LOG_DIR}/test_oof.npy", np.mean(test_preds, axis=0)) # Averaging