Skip to content

Commit

Permalink
Safer video loading from SLP (#119)
Browse files Browse the repository at this point in the history
* Safer video loading from SLP

* Add explicit control of video backend opening

* Fix tests

* Docs note

* Add explicit check for file accessibility

* Skip chmod test on windows

* Revert "Skip chmod test on windows"

This reverts commit e97cfff.

* Skip chmod test on windows
  • Loading branch information
talmo authored Sep 29, 2024
1 parent 7e91d04 commit 391df6e
Show file tree
Hide file tree
Showing 8 changed files with 279 additions and 129 deletions.
6 changes: 4 additions & 2 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -134,14 +134,16 @@ labels.save("labels.slp")
```py
import sleap_io as sio

labels = sio.load_file("labels.v001.slp")
# Load labels without trying to open the video files.
labels = sio.load_file("labels.v001.slp", open_videos=False)

# Fix paths using prefixes.
# Fix paths using prefix replacement.
labels.replace_filenames(prefix_map={
"D:/data/sleap_projects": "/home/user/sleap_projects",
"C:/Users/sleaper/Desktop/test": "/home/user/sleap_projects",
})

# Save labels with updated paths.
labels.save("labels.v002.slp")
```

Expand Down
7 changes: 5 additions & 2 deletions sleap_io/io/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,16 +7,19 @@
from pathlib import Path


def load_slp(filename: str) -> Labels:
def load_slp(filename: str, open_videos: bool = True) -> Labels:
"""Load a SLEAP dataset.
Args:
filename: Path to a SLEAP labels file (`.slp`).
open_videos: If `True` (the default), attempt to open the video backend for
I/O. If `False`, the backend will not be opened (useful for reading metadata
when the video files are not available).
Returns:
The dataset as a `Labels` object.
"""
return slp.read_labels(filename)
return slp.read_labels(filename, open_videos=open_videos)


def save_slp(
Expand Down
70 changes: 69 additions & 1 deletion sleap_io/io/nwb.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,75 @@
Instance,
PredictedInstance,
)
from sleap_io.io.utils import convert_predictions_to_dataframe


def convert_predictions_to_dataframe(labels: Labels) -> pd.DataFrame:
"""Convert predictions data to a Pandas dataframe.
Args:
labels: A general label object.
Returns:
pd.DataFrame: A pandas data frame with the structured data with
hierarchical columns. The column hierarchy is:
"video_path",
"skeleton_name",
"track_name",
"node_name",
And it is indexed by the frames.
Raises:
ValueError: If no frames in the label objects contain predicted instances.
"""
# Form pairs of labeled_frames and predicted instances
labeled_frames = labels.labeled_frames
all_frame_instance_tuples = (
(label_frame, instance) # type: ignore
for label_frame in labeled_frames
for instance in label_frame.predicted_instances
)

# Extract the data
data_list = list()
for labeled_frame, instance in all_frame_instance_tuples:
# Traverse the nodes of the instances's skeleton
skeleton = instance.skeleton
for node in skeleton.nodes:
row_dict = dict(
frame_idx=labeled_frame.frame_idx,
x=instance.points[node].x,
y=instance.points[node].y,
score=instance.points[node].score, # type: ignore[attr-defined]
node_name=node.name,
skeleton_name=skeleton.name,
track_name=instance.track.name if instance.track else "untracked",
video_path=labeled_frame.video.filename,
)
data_list.append(row_dict)

if not data_list:
raise ValueError("No predicted instances found in labels object")

labels_df = pd.DataFrame(data_list)

# Reformat the data with columns for dict-like hierarchical data access.
index = [
"skeleton_name",
"track_name",
"node_name",
"video_path",
"frame_idx",
]

labels_tidy_df = (
labels_df.set_index(index)
.unstack(level=[0, 1, 2, 3])
.swaplevel(0, -1, axis=1) # video_path on top while x, y score on bottom
.sort_index(axis=1) # Better format for columns
.sort_index(axis=0) # Sorts by frames
)

return labels_tidy_df


def get_timestamps(series: PoseEstimationSeries) -> np.ndarray:
Expand Down
134 changes: 85 additions & 49 deletions sleap_io/io/slp.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,10 +21,7 @@
Labels,
)
from sleap_io.io.video import VideoBackend, ImageVideo, MediaVideo, HDF5Video
from sleap_io.io.utils import (
read_hdf5_attrs,
read_hdf5_dataset,
)
from sleap_io.io.utils import read_hdf5_attrs, read_hdf5_dataset, is_file_accessible
from enum import IntEnum
from pathlib import Path
import imageio.v3 as iio
Expand All @@ -43,8 +40,28 @@ class InstanceType(IntEnum):
PREDICTED = 1


def sanitize_filename(
filename: str | Path | list[str] | list[Path],
) -> str | list[str]:
"""Sanitize a filename to a canonical posix-compatible format.
Args:
filename: A string or `Path` object or list of either to sanitize.
Returns:
A sanitized filename as a string (or list of strings if a list was provided)
with forward slashes and posix-formatted.
"""
if isinstance(filename, list):
return [sanitize_filename(f) for f in filename]
return Path(filename).as_posix().replace("\\", "/")


def make_video(
labels_path: str, video_json: dict, video_ind: int | None = None
labels_path: str,
video_json: dict,
video_ind: int | None = None,
open_backend: bool = True,
) -> Video:
"""Create a `Video` object from a JSON dictionary.
Expand All @@ -53,6 +70,9 @@ def make_video(
video_json: A dictionary containing the video metadata.
video_ind: The index of the video in the labels file. This is used to try to
recover the source video for embedded videos. This is skipped if `None`.
open_backend: If `True` (the default), attempt to open the video backend for
I/O. If `False`, the backend will not be opened (useful for reading metadata
when the video files are not available).
"""
backend_metadata = video_json["backend"]
video_path = backend_metadata["filename"]
Expand All @@ -65,23 +85,7 @@ def make_video(
is_embedded = True

# Basic path resolution.
video_path = Path(Path(video_path).as_posix().replace("\\", "/"))

try:
if not video_path.exists():
# Check for the same filename in the same directory as the labels file.
video_path_ = Path(labels_path).parent / video_path.name
if video_path_.exists():
video_path = video_path_
else:
# TODO (TP): Expand capabilities of path resolution to support more
# complex path finding strategies.
pass
except OSError:
pass

# Convert video path to string.
video_path = video_path.as_posix()
video_path = Path(sanitize_filename(video_path))

if is_embedded:
# Try to recover the source video.
Expand All @@ -91,37 +95,63 @@ def make_video(
f[f"video{video_ind}/source_video"].attrs["json"]
)
source_video = make_video(
labels_path, source_video_json, video_ind=None
labels_path,
source_video_json,
video_ind=None,
open_backend=open_backend,
)

if "filenames" in backend_metadata:
# This is an ImageVideo.
# TODO: Path resolution.
video_path = backend_metadata["filenames"]

try:
backend = VideoBackend.from_filename(
video_path,
dataset=backend_metadata.get("dataset", None),
grayscale=backend_metadata.get("grayscale", None),
input_format=backend_metadata.get("input_format", None),
)
except ValueError:
backend = None
backend = None
if open_backend:
try:
if not is_file_accessible(video_path):
# Check for the same filename in the same directory as the labels file.
candidate_video_path = Path(labels_path).parent / video_path.name
if is_file_accessible(candidate_video_path):
video_path = candidate_video_path
else:
# TODO (TP): Expand capabilities of path resolution to support more
# complex path finding strategies.
pass
except (OSError, PermissionError, FileNotFoundError):
pass

# Convert video path to string.
video_path = video_path.as_posix()

if "filenames" in backend_metadata:
# This is an ImageVideo.
# TODO: Path resolution.
video_path = backend_metadata["filenames"]
video_path = [Path(sanitize_filename(p)) for p in video_path]

try:
backend = VideoBackend.from_filename(
video_path,
dataset=backend_metadata.get("dataset", None),
grayscale=backend_metadata.get("grayscale", None),
input_format=backend_metadata.get("input_format", None),
)
except Exception:
backend = None

return Video(
filename=video_path,
backend=backend,
backend_metadata=backend_metadata,
source_video=source_video,
open_backend=open_backend,
)


def read_videos(labels_path: str) -> list[Video]:
def read_videos(labels_path: str, open_backend: bool = True) -> list[Video]:
"""Read `Video` dataset in a SLEAP labels file.
Args:
labels_path: A string path to the SLEAP labels file.
open_backend: If `True` (the default), attempt to open the video backend for
I/O. If `False`, the backend will not be opened (useful for reading metadata
when the video files are not available).
Returns:
A list of `Video` objects.
Expand All @@ -131,7 +161,9 @@ def read_videos(labels_path: str) -> list[Video]:
read_hdf5_dataset(labels_path, "videos_json")
):
video_json = json.loads(video_data)
video = make_video(labels_path, video_json, video_ind=video_ind)
video = make_video(
labels_path, video_json, video_ind=video_ind, open_backend=open_backend
)
videos.append(video)
return videos

Expand All @@ -145,16 +177,17 @@ def video_to_dict(video: Video) -> dict:
Returns:
A dictionary containing the video metadata.
"""
video_filename = sanitize_filename(video.filename)
if video.backend is None:
return {"filename": video.filename, "backend": video.backend_metadata}
return {"filename": video_filename, "backend": video.backend_metadata}

if type(video.backend) == MediaVideo:
return {
"filename": video.filename,
"filename": video_filename,
"backend": {
"type": "MediaVideo",
"shape": video.shape,
"filename": video.filename,
"filename": video_filename,
"grayscale": video.grayscale,
"bgr": True,
"dataset": "",
Expand All @@ -164,12 +197,12 @@ def video_to_dict(video: Video) -> dict:

elif type(video.backend) == HDF5Video:
return {
"filename": video.filename,
"filename": video_filename,
"backend": {
"type": "HDF5Video",
"shape": video.shape,
"filename": (
"." if video.backend.has_embedded_images else video.filename
"." if video.backend.has_embedded_images else video_filename
),
"dataset": video.backend.dataset,
"input_format": video.backend.input_format,
Expand All @@ -180,12 +213,12 @@ def video_to_dict(video: Video) -> dict:

elif type(video.backend) == ImageVideo:
return {
"filename": video.filename,
"filename": video_filename,
"backend": {
"type": "ImageVideo",
"shape": video.shape,
"filename": video.backend.filename[0],
"filenames": video.backend.filename,
"filename": sanitize_filename(video.backend.filename[0]),
"filenames": sanitize_filename(video.backend.filename),
"dataset": video.backend_metadata.get("dataset", None),
"grayscale": video.grayscale,
"input_format": video.backend_metadata.get("input_format", None),
Expand Down Expand Up @@ -1003,17 +1036,20 @@ def write_lfs(labels_path: str, labels: Labels):
)


def read_labels(labels_path: str) -> Labels:
def read_labels(labels_path: str, open_videos: bool = True) -> Labels:
"""Read a SLEAP labels file.
Args:
labels_path: A string path to the SLEAP labels file.
open_videos: If `True` (the default), attempt to open the video backend for
I/O. If `False`, the backend will not be opened (useful for reading metadata
when the video files are not available).
Returns:
The processed `Labels` object.
"""
tracks = read_tracks(labels_path)
videos = read_videos(labels_path)
videos = read_videos(labels_path, open_backend=open_videos)
skeletons = read_skeletons(labels_path)
points = read_points(labels_path)
pred_points = read_pred_points(labels_path)
Expand Down
Loading

0 comments on commit 391df6e

Please sign in to comment.