マルチエージェント強化学習用のサッカー環境
HalfFieldOffense環境は現状シングルエージェントでの環境を使用したものが多く、マルチエージェントでの環境があまり用意されていません。Ray,Rllibとgymを使用した環境はありますがどちらも複雑になっているため、カスタムして使うには敷居が高い。こんな感じに使えばマルチエージェント化して使えるという一例。 参考元サイトからコードを引用して使用
Half Field Offense (HFO) is currently used mostly as a single agent environment, so there are not many multi-agent environments for HFO. Therefore, there are not many multi-agent environments available for HFO. The multi-agent environment for HFO using Ray, Rllib and gyms is complex and suffers from the need for reference. (You need to know Ray and RLlib.) Using pytorch's multi-processes, you can connect servers and agents more easily. In addition, you can share Q-values so you can use existing Deep MARLs.
This is an example of how you can use a multi-agent environment if you use something like this. The code is taken from the reference site and used.
The RoboCup Soccer Simulator:https://github.com/rcsoccersim
Half Field Offense:https://github.com/LARG/HFO
DDPG:https://github.com/openai/spinningup
PA-DDPG:https://github.com/mhauskn/dqn-hfo
Multi-Pass Deep Q-Networks:https://github.com/cycraig/MP-DQN
Random Network Distillation:https://github.com/openai/random-network-distillation
Curious Explorer:https://github.com/SaeedTafazzol/curious_explorer