Skip to content

Latest commit

 

History

History
87 lines (74 loc) · 3.64 KB

README.md

File metadata and controls

87 lines (74 loc) · 3.64 KB

GradAug: A New Regularization Method for Deep Neural Networks (NeurIPS'20) [arXiv]

This work proposes to utilize randomly transformed training samples to regularize a set of sub-networks. The motivation is that a well-generalized network, and its sub-networks, should recognize transformed images as the same object. The proposed method is simple, general yet effective. It achieves state-of-the-art performance on ImageNet and Cifar classification, and can further improve downstream tasks such as object detection and instance segmentation. The effectiveness is also validated on model robustness and low data regimes.

Install

  • Pytorch 1.0.0+, torchvision, Numpy, pyyaml
  • Follow the PyTorch example to prepare ImageNet dataset.

Run

  1. ImageNet experiments are conducted on 8 GPUs.

To train ResNet-50,

python train.py app:configs/resnet50_randwidth.yml

To test a pre-trained model,

Modify test_only: False to test_only: True in .yml file to enable testing.

Modify pretrained: /PATH/TO/YOUR/WEIGHTS to assign pre-trained weights.

  1. Cifar experiments are conducted on 2 GPUs.

To train WideResNet-28-10,

python train_cifar.py app:configs/wideresnet_randwidth.yml

To train PyramidNet-200,

python train_cifar.py app:configs/pyramidnet_randwidth.yml
  1. Generate sub-networks by random depth.
python train_cifar.py app:configs/resnet_randdepth,yml

Results

  1. ImageNet classification accuacy. Note that we report the final-epoch results.
Model FLOPs Top-1 Top-5
ResNet-50 4.1 G 76.32 92.95
+Dropblock 4.1 G 78.13 94.02
+Mixup 4.1 G 77.9 93.9
+CutMix 4.1 G 78.60 94.08
+StochDepth 4.1 G 77.53 93.73
+ShakeDrop 4.1 G 77.5 -
+GradAug (Model) 4.1 G 78.78 94.43
+bag of tricks 4.3 G 79.29 94.38
+GradAug+CutMix (Model) 4.1 G 79.67 94.93
  1. Cifar-100 classification accuracy. Note that we report the final-epoch results.
WideResNet-28-10 Top-1 Top-5
Baseline 81.53 95.59
+Mixup 82.5 -
+CutMix 84.08 96.28
+ShakeDrop 81.65 96.19
+GradAug (Model) 83.98 96.17
+GradAug+CutMix (Model) 85.35 96.85
PyramidNet-200 Top-1 Top-5
Baseline 83.49 94.31
+Mixup 84.37 96.01
+CutMix 84.83 96.73
+ShakeDrop 84.57 97.08
+GradAug (Model) 85.53 97.04
+GradAug+CutMix (Model) 86.24 97.33
  1. Experiments of generating sub-networks by random depth.
ResNet-110 Cifar-10 Cifar-100
Baseline 93.59 72.24
+StochDepth 94.75 75.02
+GradAug-Randdepth 95.77 (Model) 77.63 (Model)

Citation

If you find this useful in your work, please consider citing,

@article{yang2020gradaug,
  title={GradAug: A New Regularization Method for Deep Neural Networks},
  author={Yang, Taojiannan and Zhu, Sijie and Chen, Chen},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}