forked from vedderb/bldc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
flash_helper.c
465 lines (374 loc) · 12.8 KB
/
flash_helper.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/*
Copyright 2016 - 2022 Benjamin Vedder benjamin@vedder.se
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "flash_helper.h"
#include "ch.h"
#include "hal.h"
#include "stm32f4xx_conf.h"
#include "utils_sys.h"
#include "mc_interface.h"
#include "timeout.h"
#include "hw.h"
#include "crc.h"
#include "buffer.h"
#include <string.h>
#ifdef USE_LISPBM
#include "lispif.h"
#endif
/*
* Defines
*/
#define FLASH_SECTORS 12
#define BOOTLOADER_BASE 11
#define APP_BASE 0
#define NEW_APP_BASE 8
#define NEW_APP_SECTORS 3
#define APP_MAX_SIZE (1024 * 128 * 4 - 8) // Note that the bootloader needs 8 extra bytes
#define QMLUI_BASE 9
#define LISP_BASE 10
#define QMLUI_MAX_SIZE (1024 * 128 - 8)
#define LISP_MAX_SIZE (1024 * 128 - 8)
// Base address of the Flash sectors
#define ADDR_FLASH_SECTOR_0 ((uint32_t)0x08000000) // Base @ of Sector 0, 16 Kbytes
#define ADDR_FLASH_SECTOR_1 ((uint32_t)0x08004000) // Base @ of Sector 1, 16 Kbytes
#define ADDR_FLASH_SECTOR_2 ((uint32_t)0x08008000) // Base @ of Sector 2, 16 Kbytes
#define ADDR_FLASH_SECTOR_3 ((uint32_t)0x0800C000) // Base @ of Sector 3, 16 Kbytes
#define ADDR_FLASH_SECTOR_4 ((uint32_t)0x08010000) // Base @ of Sector 4, 64 Kbytes
#define ADDR_FLASH_SECTOR_5 ((uint32_t)0x08020000) // Base @ of Sector 5, 128 Kbytes
#define ADDR_FLASH_SECTOR_6 ((uint32_t)0x08040000) // Base @ of Sector 6, 128 Kbytes
#define ADDR_FLASH_SECTOR_7 ((uint32_t)0x08060000) // Base @ of Sector 7, 128 Kbytes
#define ADDR_FLASH_SECTOR_8 ((uint32_t)0x08080000) // Base @ of Sector 8, 128 Kbytes
#define ADDR_FLASH_SECTOR_9 ((uint32_t)0x080A0000) // Base @ of Sector 9, 128 Kbytes
#define ADDR_FLASH_SECTOR_10 ((uint32_t)0x080C0000) // Base @ of Sector 10, 128 Kbytes
#define ADDR_FLASH_SECTOR_11 ((uint32_t)0x080E0000) // Base @ of Sector 11, 128 Kbytes
#define VECTOR_TABLE_ADDRESS ((uint32_t*)ADDR_FLASH_SECTOR_0)
#define VECTOR_TABLE_SIZE ((uint32_t)(ADDR_FLASH_SECTOR_1 - ADDR_FLASH_SECTOR_0))
#define EEPROM_EMULATION_SIZE ((uint32_t)(ADDR_FLASH_SECTOR_4 - ADDR_FLASH_SECTOR_2))
#define APP_START_ADDRESS ((uint32_t*)(ADDR_FLASH_SECTOR_3))
#define APP_SIZE ((uint32_t)(APP_MAX_SIZE - VECTOR_TABLE_SIZE - EEPROM_EMULATION_SIZE))
#define APP_CRC_WAS_CALCULATED_FLAG ((uint32_t)0x00000000)
#define APP_CRC_WAS_CALCULATED_FLAG_ADDRESS ((uint32_t*)(ADDR_FLASH_SECTOR_0 + APP_MAX_SIZE - 8))
#define APP_CRC_ADDRESS ((uint32_t*)(ADDR_FLASH_SECTOR_0 + APP_MAX_SIZE - 4))
#define ERASE_VOLTAGE_RANGE (uint8_t)((PWR->CSR & PWR_CSR_PVDO) ? VoltageRange_2 : VoltageRange_3)
typedef struct {
uint32_t crc_flag;
uint32_t crc;
} crc_info_t;
// Make sure the app image has the CRC bits set to '1' to later write the flag and CRC.
const crc_info_t __attribute__((section (".crcinfo"))) crc_info = {0xFFFFFFFF, 0xFFFFFFFF};
// Private functions
static uint16_t erase_sector(uint32_t sector);
static uint16_t write_data(uint32_t base, uint8_t *data, uint32_t len);
static void qmlui_check(int ind);
// Private variables
typedef struct {
bool check_done;
bool ok;
} _code_checks;
static _code_checks code_checks[2] = {0};
static int code_sectors[2] = {QMLUI_BASE, LISP_BASE};
// Private constants
static const uint32_t flash_addr[FLASH_SECTORS] = {
ADDR_FLASH_SECTOR_0,
ADDR_FLASH_SECTOR_1,
ADDR_FLASH_SECTOR_2,
ADDR_FLASH_SECTOR_3,
ADDR_FLASH_SECTOR_4,
ADDR_FLASH_SECTOR_5,
ADDR_FLASH_SECTOR_6,
ADDR_FLASH_SECTOR_7,
ADDR_FLASH_SECTOR_8,
ADDR_FLASH_SECTOR_9,
ADDR_FLASH_SECTOR_10,
ADDR_FLASH_SECTOR_11
};
static const uint16_t flash_sector[FLASH_SECTORS] = {
FLASH_Sector_0,
FLASH_Sector_1,
FLASH_Sector_2,
FLASH_Sector_3,
FLASH_Sector_4,
FLASH_Sector_5,
FLASH_Sector_6,
FLASH_Sector_7,
FLASH_Sector_8,
FLASH_Sector_9,
FLASH_Sector_10,
FLASH_Sector_11
};
uint16_t flash_helper_erase_new_app(uint32_t new_app_size) {
#ifdef USE_LISPBM
lispif_stop_lib();
#endif
FLASH_Unlock();
FLASH_ClearFlag(FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR |
FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR);
new_app_size += flash_addr[NEW_APP_BASE];
mc_interface_ignore_input_both(5000);
mc_interface_release_motor_override_both();
if (!mc_interface_wait_for_motor_release_both(3.0)) {
return 100;
}
utils_sys_lock_cnt();
timeout_configure_IWDT_slowest();
for (int i = 0;i < NEW_APP_SECTORS;i++) {
if (new_app_size > flash_addr[NEW_APP_BASE + i]) {
uint16_t res = FLASH_EraseSector(flash_sector[NEW_APP_BASE + i], ERASE_VOLTAGE_RANGE);
if (res != FLASH_COMPLETE) {
FLASH_Lock();
timeout_configure_IWDT();
mc_interface_ignore_input_both(5000);
utils_sys_unlock_cnt();
return res;
}
} else {
break;
}
}
FLASH_Lock();
timeout_configure_IWDT();
mc_interface_ignore_input_both(100);
utils_sys_unlock_cnt();
return FLASH_COMPLETE;
}
uint16_t flash_helper_erase_bootloader(void) {
return erase_sector(flash_sector[BOOTLOADER_BASE]);
}
uint16_t flash_helper_write_new_app_data(uint32_t offset, uint8_t *data, uint32_t len) {
return write_data(flash_addr[NEW_APP_BASE] + offset, data, len);
}
uint16_t flash_helper_erase_code(int ind) {
#ifdef USE_LISPBM
if (ind == CODE_IND_LISP) {
lispif_stop_lib();
}
#endif
code_checks[ind].check_done = false;
code_checks[ind].ok = false;
return erase_sector(flash_sector[code_sectors[ind]]);
}
uint16_t flash_helper_write_code(int ind, uint32_t offset, uint8_t *data, uint32_t len) {
code_checks[ind].check_done = false;
code_checks[ind].ok = false;
return write_data(flash_addr[code_sectors[ind]] + offset, data, len);
}
uint8_t* flash_helper_code_data(int ind) {
qmlui_check(ind);
if (code_checks[ind].check_done && code_checks[ind].ok) {
return (uint8_t*)(flash_addr[code_sectors[ind]]) + 8;
} else {
return 0;
}
}
uint32_t flash_helper_code_size(int ind) {
qmlui_check(ind);
if (code_checks[ind].check_done && code_checks[ind].ok) {
uint8_t *base = (uint8_t*)(flash_addr[code_sectors[ind]]);
int32_t index = 0;
return buffer_get_uint32(base, &index);
} else {
return 0;
}
}
uint16_t flash_helper_code_flags(int ind) {
qmlui_check(ind);
if (code_checks[ind].check_done && code_checks[ind].ok) {
uint8_t *base = (uint8_t*)(flash_addr[code_sectors[ind]]);
int32_t index = 6;
return buffer_get_uint16(base, &index);
} else {
return 0;
}
}
/**
* Stop the system and jump to the bootloader.
*/
void flash_helper_jump_to_bootloader(void) {
typedef void (*pFunction)(void);
mc_interface_release_motor_override();
usbDisconnectBus(&USBD1);
usbStop(&USBD1);
sdStop(&HW_UART_DEV);
palSetPadMode(HW_UART_TX_PORT, HW_UART_TX_PIN, PAL_MODE_INPUT);
palSetPadMode(HW_UART_RX_PORT, HW_UART_RX_PIN, PAL_MODE_INPUT);
// Disable watchdog
timeout_configure_IWDT_slowest();
chSysDisable();
pFunction jump_to_bootloader;
// Variable that will be loaded with the start address of the application
volatile uint32_t* jump_address;
const volatile uint32_t* bootloader_address = (volatile uint32_t*)0x080E0000;
// Get jump address from application vector table
jump_address = (volatile uint32_t*) bootloader_address[1];
// Load this address into function pointer
jump_to_bootloader = (pFunction) jump_address;
// Clear pending interrupts
SCB->ICSR = SCB_ICSR_PENDSVCLR_Msk;
// Disable all interrupts
for(int i = 0;i < 8;i++) {
NVIC->ICER[i] = NVIC->IABR[i];
}
// Set stack pointer
__set_MSP((uint32_t) (bootloader_address[0]));
// Jump to the bootloader
jump_to_bootloader();
}
uint8_t* flash_helper_get_sector_address(uint32_t fsector) {
uint8_t *res = 0;
for (int i = 0;i < FLASH_SECTORS;i++) {
if (flash_sector[i] == fsector) {
res = (uint8_t *)flash_addr[i];
break;
}
}
return res;
}
/**
* @brief Compute the CRC of the application code to verify its integrity
* @retval FAULT_CODE_NONE or FAULT_CODE_FLASH_CORRUPTION
*/
uint32_t flash_helper_verify_flash_memory(void) {
uint32_t crc;
// Look for a flag indicating that the CRC was previously computed.
// If it is blank (0xFFFFFFFF), calculate and store the CRC.
if(APP_CRC_WAS_CALCULATED_FLAG_ADDRESS[0] == APP_CRC_WAS_CALCULATED_FLAG) {
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_CRC, ENABLE);
crc32_reset();
// compute vector table (sector 0)
crc32(VECTOR_TABLE_ADDRESS, (VECTOR_TABLE_SIZE) / 4);
// skip emulated EEPROM (sector 1 and 2)
// compute application code
crc = crc32(APP_START_ADDRESS, (APP_SIZE) / 4);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_CRC, DISABLE);
// A CRC over the full image should return zero.
return (crc == 0) ? FAULT_CODE_NONE : FAULT_CODE_FLASH_CORRUPTION;
} else {
FLASH_Unlock();
FLASH_ClearFlag(FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR |
FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR);
// Write the flag to indicate CRC has been computed.
uint16_t res = FLASH_ProgramWord((uint32_t)APP_CRC_WAS_CALCULATED_FLAG_ADDRESS, APP_CRC_WAS_CALCULATED_FLAG);
if (res != FLASH_COMPLETE) {
FLASH_Lock();
return FAULT_CODE_FLASH_CORRUPTION;
}
// Compute flash crc including the new flag
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_CRC, ENABLE);
crc32_reset();
// compute vector table (sector 0)
crc32(VECTOR_TABLE_ADDRESS, (VECTOR_TABLE_SIZE) / 4);
// skip emulated EEPROM (sector 1 and 2)
// compute application code
crc = crc32(APP_START_ADDRESS, (APP_SIZE - 4) / 4);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_CRC, DISABLE);
//Store CRC
res = FLASH_ProgramWord((uint32_t)APP_CRC_ADDRESS, crc);
if (res != FLASH_COMPLETE) {
FLASH_Lock();
return FAULT_CODE_FLASH_CORRUPTION;
}
FLASH_Lock();
// reboot
NVIC_SystemReset();
return FAULT_CODE_NONE;
}
}
uint32_t flash_helper_verify_flash_memory_chunk(void) {
static uint32_t index = 0;
uint32_t chunk_size = 1024;
uint32_t res = FAULT_CODE_NONE;
uint32_t crc = 0;
uint32_t tot_bytes = VECTOR_TABLE_SIZE + APP_SIZE;
// Make sure RCC_AHB1Periph_CRC is enabled
if (index == 0) {
crc32_reset();
}
if ((index + chunk_size) >= tot_bytes) {
chunk_size = tot_bytes - index;
}
if (index < VECTOR_TABLE_SIZE) {
crc32(VECTOR_TABLE_ADDRESS + index / 4, chunk_size / 4);
} else {
crc = crc32(APP_START_ADDRESS + (index - VECTOR_TABLE_SIZE) / 4, chunk_size / 4);
}
index += chunk_size;
if (index >= tot_bytes) {
index = 0;
if (crc != 0) {
res = FAULT_CODE_FLASH_CORRUPTION;
}
}
return res;
}
static uint16_t erase_sector(uint32_t sector) {
FLASH_Unlock();
FLASH_ClearFlag(FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR |
FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR);
mc_interface_ignore_input_both(5000);
mc_interface_release_motor_override_both();
if (!mc_interface_wait_for_motor_release_both(3.0)) {
return 100;
}
utils_sys_lock_cnt();
timeout_configure_IWDT_slowest();
uint16_t res = FLASH_EraseSector(sector, ERASE_VOLTAGE_RANGE);
FLASH_Lock();
timeout_configure_IWDT();
mc_interface_ignore_input_both(100);
utils_sys_unlock_cnt();
return res;
}
static uint16_t write_data(uint32_t base, uint8_t *data, uint32_t len) {
FLASH_Unlock();
FLASH_ClearFlag(FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR |
FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR);
mc_interface_ignore_input_both(5000);
mc_interface_release_motor_override_both();
if (!mc_interface_wait_for_motor_release_both(3.0)) {
return 100;
}
utils_sys_lock_cnt();
timeout_configure_IWDT_slowest();
for (uint32_t i = 0;i < len;i++) {
uint16_t res = FLASH_ProgramByte(base + i, data[i]);
if (res != FLASH_COMPLETE) {
FLASH_Lock();
timeout_configure_IWDT();
mc_interface_ignore_input_both(5000);
utils_sys_unlock_cnt();
return res;
}
}
FLASH_Lock();
timeout_configure_IWDT();
mc_interface_ignore_input_both(100);
utils_sys_unlock_cnt();
return FLASH_COMPLETE;
}
static void qmlui_check(int ind) {
if (code_checks[ind].check_done) {
return;
}
uint8_t *base = (uint8_t*)(flash_addr[code_sectors[ind]]);
int32_t index = 0;
uint32_t qmlui_len = buffer_get_uint32(base, &index);
uint16_t qmlui_crc = buffer_get_uint16(base, &index);
if (qmlui_len <= QMLUI_MAX_SIZE) {
uint16_t crc_calc = crc16(base + index, qmlui_len + 2); // CRC includes the 2 byte flags
code_checks[ind].ok = crc_calc == qmlui_crc;
} else {
code_checks[ind].ok = false;
}
code_checks[ind].check_done = true;
}