-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_utils.py
73 lines (62 loc) · 3.15 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import glob
import os
import numpy as np
import pandas as pd
from torch.utils.data import Dataset
import torch
from torch.utils.data import random_split
import torchvision.transforms as transforms
def read_freq_data(folder_path, signal_percentage=1, include_abnormal=True):
sixhzsignals = list()
twelvehzsignals = list()
labels = list()
sixhz_normal = pd.read_csv(os.path.join(folder_path, f"6Hz_normal.csv"), header=None).transpose()
twelvehz_normal = pd.read_csv(os.path.join(folder_path, f"12Hz_normal.csv"), header=None).transpose()
print(f"Normal Signal shape: {sixhz_normal.shape}, {twelvehz_normal.shape}")
sixhzsignals.append(sixhz_normal)
twelvehzsignals.append(twelvehz_normal)
labels.extend([0] * sixhz_normal.shape[0])
if include_abnormal:
sixhz_abnormal = pd.read_csv(os.path.join(folder_path, f"6Hz_abnormal.csv"), header=None).transpose()
twelvehz_abnormal = pd.read_csv(os.path.join(folder_path, f"12Hz_abnormal.csv"), header=None).transpose()
print(f"Abnormal Signal shape: {sixhz_abnormal.shape}, {twelvehz_abnormal.shape}")
sixhzsignals.append(sixhz_abnormal)
twelvehzsignals.append(twelvehz_abnormal)
labels.extend([1] * sixhz_abnormal.shape[0])
labels = np.array(labels)
sixhzsignal = pd.concat(sixhzsignals)
twelvehzsignal = pd.concat(twelvehzsignals)
input_signal = sixhzsignal.to_numpy()
input_signal = input_signal[:, :int(input_signal.shape[1] * signal_percentage)]
output_signal = twelvehzsignal.to_numpy()
output_signal = output_signal[:, :int(output_signal.shape[1] * signal_percentage)]
print(f"Normal Signals count- {np.sum(labels==0)}")
print(f"Abnormal Signals count- {np.sum(labels==1)}")
print(f"6Hz Signals shape - {input_signal.shape}")
print(f"12Hz Signals shape - {output_signal.shape}")
print(f"Labels - {labels.shape}")
return input_signal.astype(np.float32), output_signal.astype(np.float32), labels
class SignalDataset(Dataset):
def __init__(self, input_signal, output_signal, labels, transform=None, hrv_values=None):
self.input_signal = input_signal
self.output_signal = output_signal
self.labels = labels
self.hrv_values = hrv_values
def __getitem__(self, index):
inp_sig = torch.from_numpy(self.input_signal[index])
op_sig = torch.from_numpy(self.output_signal[index])
label = self.labels[index]
if self.hrv_values is not None:
hrv = self.hrv_values[index]
return inp_sig, op_sig, label, hrv
return inp_sig, op_sig, label
def __len__(self):
return self.input_signal.shape[0]
def get_all_sets(input_signal, output_signal, labels, hrv_data=None):
full_dataset = SignalDataset(input_signal, output_signal, labels, transforms.ToTensor(), hrv_values=hrv_data)
# return random_split(full_dataset, [573, 192, 192])
# return random_split(full_dataset, [521, 200, 150])
# return random_split(full_dataset, [1211, 404, 404])
return random_split(full_dataset, [3979, 854, 854], generator=torch.Generator().manual_seed(1))
if __name__ =="__main__":
read_freq_data('/Users/ganesh/UofA/SNN/freq_data')