-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsturm.scm
166 lines (131 loc) · 5.2 KB
/
sturm.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#lang racket
(provide p%q)
(provide sturm-chain)
(provide count-roots)
(provide find-roots)
; All polynomes are represented by the list of size (d+1) of their coefficients
; in increasing order of exponent, where d is the highest exponent whose
; coefficient is non-zero.
; For instance, the polynme P(x) = 2 + 3x + x^3 is represented by (2 3 0 1).
; if p and q are respectively the representation of P(x) and Q(x),
; (p%q p q) returns the representation of R(x), the remainder of the division
; of P(x) by Q(x).
(define p%q
(lambda(p q)
(let* ([p (reverse p)] [q (reverse q)])
(reverse (p%q_aux p q )))))
; if p and q are respectively the representation of P(x) and Q(x)
;with decreasing powers from left to right,
; (p%q p q) returns the representation of R(x) ,the remainder of
;the division of P(x) by Q(x) with decreasing powers from left to right
; .
(define p%q_aux
(lambda(p q)
(cond ((eq? (length p) 1) p)
((zero? (car p)) (p%q_aux (cdr p) q))
((< (length p) (length q)) p)
(else(let* ([subls (sublist p q)]
[next (cdr (substract_lists p subls))]) ;Get the next iteration
(p%q_aux next q))))))
;Substracts the list p by the list subls,
;element by element. If either one of the lists
;is longer than the other, the rest is appended to
;the difference
(define substract_lists
(lambda (p subls)
(cond ((null? subls) p)
((null? p) subls)
(else (cons (- (car p) (car subls))
(substract_lists (cdr p) (cdr subls)))))))
;If p1 and q1 are the first coefficient of the lists p and q
;this method returns the list where each element of q is
;multiplied by (p1/q1)
(define sublist
(lambda (p q)
(let ((div (/ (car p) (car q)) ))
(map (lambda (x) (* div x)) q))))
; if p is a polynome, (sturm-chain p) returns the Sturm chain of p by decreasing
; order of powers.
(define sturm-chain
(lambda (p)
(let ([base (cons p (list (cdr (deriv p))))])
(sturm-chain-acc base))))
(define sturm-chain-acc
(lambda (acc)
(let* ([n (length acc)]
[i-1 (list-ref acc (- n 1))]
[i-2 (list-ref acc (- n 2))]
[i (map - (p%q i-2 i-1))])
(if (<= (length i) 1) (append acc (list i))
(sturm-chain-acc (append acc (list i)))))))
;If p is a polynome in increasing order of powers from left to right,
;(deriv p) gives the derivative of p |#
(define deriv
(lambda (p)
(define (deriv-aux n p)
(if (null? p) '()
(cons (* n (car p))
(deriv-aux (+ n 1) (cdr p)))))
(deriv-aux 0 p)))
; Evaluates the sturm-chain sturm at a given value x and returns a list
; containing the result of each polynome
(define eval-sturm
(lambda (x sturm)
(if (null? sturm) '()
(cons (eval-poly x (car sturm)) (eval-sturm x (cdr sturm))))
))
; Evaluates the polynome p,with increasing powers from left to right
; using the value x
(define eval-poly
(lambda (x p)
(define (eval-poly-aux x p n)
(cond ((null? p) 0)
((or (= x +inf.0) (= x -inf.0)) (* (car (reverse p)) (expt x (- (length p) 1))))
(else (+ (* (car p) (expt x n))
(eval-poly-aux x (cdr p) (+ n 1))))))
(eval-poly-aux x p 0)))
;If p is a list of real numbers,
;(signs p) returns the number of sign changes
;from one number to the other, left to right
;0 is considered positive
(define signs
(lambda (p)
(if (null? (cdr p)) 0
(if (or (and (>= (car p) 0)
(< (cadr p) 0))
(and (< (car p) 0)
(>= (cadr p) 0))
)
(+ 1 (signs (cdr p)))
(+ 0 (signs (cdr p)))))))
; if p is a polynome and both a and b are numbers such that a < b,
; (count-roots p a b) returns the number of roots of p
; on ]a b]
(define count-roots
(lambda (p a b)
(let* ([sturm (sturm-chain p)]
[sign_a (signs (eval-sturm a sturm))]
[sign_b (signs (eval-sturm b sturm))])
(- sign_a sign_b)
)))
; if p is a polynome, both a and b are numbers (such that a < b) and eps
; is a positive real, (find-roots p a b eps) returns the ordered list
; of roots of p on the ]a, b] interval with precision eps
(define find-roots
(lambda(p a b eps)
(let ([nbroots (count-roots p a b)])
(cond ((zero? nbroots) '())
((eq? nbroots 1) (bisection p a b eps))
((<= (abs (- b a)) eps) (list a))
(else (let ([m (/ (+ a b) 2)])
(append (find-roots p a m eps) (find-roots p m b eps))))))))
; If p is a polynome, a and b are real numbers such that a < b and eps
; is a positive real, (bisection p a b eps) returns the root
; of p on the interval ]a, b] with precision eps
(define bisection
(lambda (p a b eps)
(let ([m (/ (+ a b) 2)] [eval-a (eval-poly a p)])
(cond ((<= (abs (- b a)) eps) (list a))
((positive? (* eval-a (eval-poly b p))) '())
((<= (* eval-a (eval-poly m p)) 0) (bisection p a m eps))
(else (bisection p m b eps))))))