-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathelasto-plasticity.py
230 lines (183 loc) · 8.1 KB
/
elasto-plasticity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
import scipy.sparse.linalg as sp
import itertools
# turn of warning for zero division (occurs due to vectorization)
np.seterr(divide='ignore', invalid='ignore')
# ----------------------------------- GRID ------------------------------------
Nx = 31 # number of voxels in x-direction
Ny = 31 # number of voxels in y-direction
Nz = 1 # number of voxels in z-direction
shape = [Nx,Ny,Nz] # number of voxels as list: [Nx,Ny,Nz]
ndof = 3**2*Nx*Ny*Nz # number of degrees-of-freedom
# ---------------------- PROJECTION, TENSORS, OPERATIONS ----------------------
# tensor operations/products: np.einsum enables index notation, avoiding loops
# e.g. ddot42 performs $C_ij = A_ijkl B_lk$ for the entire grid
trans2 = lambda A2 : np.einsum('ijxyz ->jixyz ',A2 )
ddot22 = lambda A2,B2: np.einsum('ijxyz ,jixyz ->xyz ',A2,B2)
ddot42 = lambda A4,B2: np.einsum('ijklxyz,lkxyz ->ijxyz ',A4,B2)
ddot44 = lambda A4,B4: np.einsum('ijklxyz,lkmnxyz->ijmnxyz',A4,B4)
dot11 = lambda A1,B1: np.einsum('ixyz ,ixyz ->xyz ',A1,B1)
dot22 = lambda A2,B2: np.einsum('ijxyz ,jkxyz ->ikxyz ',A2,B2)
dot24 = lambda A2,B4: np.einsum('ijxyz ,jkmnxyz->ikmnxyz',A2,B4)
dot42 = lambda A4,B2: np.einsum('ijklxyz,lmxyz ->ijkmxyz',A4,B2)
dyad22 = lambda A2,B2: np.einsum('ijxyz ,klxyz ->ijklxyz',A2,B2)
# identity tensor [single tensor]
i = np.eye(3)
# identity tensors [grid of tensors]
I = np.einsum('ij,xyz' , i ,np.ones([Nx,Ny,Nz]))
I4 = np.einsum('ijkl,xyz->ijklxyz',np.einsum('il,jk',i,i),np.ones([Nx,Ny,Nz]))
I4rt = np.einsum('ijkl,xyz->ijklxyz',np.einsum('ik,jl',i,i),np.ones([Nx,Ny,Nz]))
II = dyad22(I,I)
I4s = (I4+I4rt)/2.
I4d = (I4s-II/3.)
# projection operator (zero for zero frequency, associated with the mean)
# NB: vectorized version of "../linear-elasticity.py"
# - allocate / define support function
Ghat4 = np.zeros([3,3,3,3,Nx,Ny,Nz]) # projection operator
x = np.zeros([3 ,Nx,Ny,Nz],dtype='int64') # position vectors
q = np.zeros([3 ,Nx,Ny,Nz],dtype='int64') # frequency vectors
delta = lambda i,j: np.float(i==j) # Dirac delta function
# - set "x" as position vector of all grid-points [grid of vector-components]
x[0],x[1],x[2] = np.mgrid[:Nx,:Ny,:Nz]
# - convert positions "x" to frequencies "q" [grid of vector-components]
for i in range(3):
freq = np.arange(-(shape[i]-1)/2,+(shape[i]+1)/2,dtype='int64')
q[i] = freq[x[i]]
# - compute "Q = ||q||", and "norm = 1/Q" being zero for the mean (Q==0)
# NB: avoid zero division
q = q.astype(np.float64)
Q = dot11(q,q)
Z = Q==0
Q[Z] = 1.
norm = 1./Q
norm[Z] = 0.
# - set projection operator [grid of tensors]
for i, j, l, m in itertools.product(range(3), repeat=4):
Ghat4[i,j,l,m] = -(norm**2.)*(q[i]*q[j]*q[l]*q[m])+\
.5*norm*( delta(j,l)*q[i]*q[m]+delta(j,m)*q[i]*q[l] +\
delta(i,l)*q[j]*q[m]+delta(i,m)*q[j]*q[l] )
# (inverse) Fourier transform (for each tensor component in each direction)
fft = lambda x: np.fft.fftshift(np.fft.fftn (np.fft.ifftshift(x),[Nx,Ny,Nz]))
ifft = lambda x: np.fft.fftshift(np.fft.ifftn(np.fft.ifftshift(x),[Nx,Ny,Nz]))
# functions for the projection 'G', and the product 'G : K : eps'
G = lambda A2 : np.real( ifft( ddot42(Ghat4,fft(A2)) ) ).reshape(-1)
K_deps = lambda depsm: ddot42(K4,depsm.reshape(3,3,Nx,Ny,Nz))
G_K_deps = lambda depsm: G(K_deps(depsm))
# ------------------- PROBLEM DEFINITION / CONSTITIVE MODEL -------------------
# constitutive response to a certain loading (and history)
# NB: completely uncoupled from the FFT-solver, but implemented as a regular
# grid of quadrature points, to have an efficient code;
# each point is completely independent, just evaluated at the same time
# NB: all points for both models, but selectively ignored per materials
# this avoids loops or a problem specific constitutive implementation
# linear elasticity
# -----------------
def elastic(eps):
# parameters
K = 2. # bulk modulus
mu = 1. # shear modulus
# elastic stiffness tensor, and stress response
C4 = K*II+2.*mu*I4d
sig = ddot42(C4,eps)
return sig,C4
# elasto-plasticity
# -----------------
def elastoplastic(eps,eps_t,epse_t,ep_t):
# parameters
K = 2. # bulk modulus
mu = 1. # shear modulus
sigy0 = 0.01 # initial yield stress
H = 0.05 # hardening modulus
n = 1. # hardening exponent
# elastic stiffness tensor
C4e = K*II+2.*mu*I4d
# trial state
epse_s = epse_t+(eps-eps_t)
sig_s = ddot42(C4e,epse_s)
sigm_s = ddot22(sig_s,I)/3.
sigd_s = sig_s-sigm_s*I
sigeq_s = np.sqrt(3./2.*ddot22(sigd_s,sigd_s))
# avoid zero division below ("phi_s" is corrected below)
Z = sigeq_s==0.
sigeq_s[Z] = 1.
# evaluate yield surface, set to zero if elastic (or stress-free)
phi_s = sigeq_s-(sigy0+H*ep_t**n)
phi_s = 1./2.*(phi_s+np.abs(phi_s))
phi_s[Z] = 0.
el = phi_s<=0.
# plastic multiplier, based on non-linear hardening
# - initialize
dgamma = np.zeros([Nx,Ny,Nz])
res = np.array(phi_s,copy=True)
dH = n*H*(ep_t)**(n-1.); dH[np.abs(ep_t)<=1.e-6] = 0.
# - incrementally solve scalar non-linear return-map equation
while np.max(np.abs(res))/sigy0>1.e-6:
dgamma -= res/(-3.*mu-dH)
dH = n*H*(ep_t+dgamma)**(n-1.); dH[np.abs(ep_t+dgamma)<=1.e-6] = 0.
res = sigeq_s-3.*mu*dgamma-(sigy0+H*(ep_t+dgamma)**n)
res[el] = 0.
# - enforce elastic quadrature points to stay elastic
dgamma[el] = 0.
dH [el] = 0.
# return map
N = 3./2.*sigd_s/sigeq_s
ep = ep_t +dgamma
sig = sig_s -dgamma*N*2.*mu
epse = epse_s-dgamma*N
# plastic tangent stiffness
C4ep = C4e-\
6.*(mu**2.)* dgamma/sigeq_s *I4d+\
4.*(mu**2.)*(dgamma/sigeq_s-1./(3.*mu+dH))*dyad22(N,N)
# consistent tangent operator: elastic/plastic switch
el = el.astype(np.float)
K4 = C4e*el+C4ep*(1.-el)
return sig,K4,epse,ep
# laminate of two materials
# -------------------------
def constitutive(eps,eps_t,epse_t,ep_t):
phase = np.zeros([Nx,Ny,Nz]); phase[:26,:,:] = 1.
sig_P1,K4_P1,epse,ep = elastoplastic(eps,eps_t,epse_t,ep_t)
sig_P2,K4_P2 = elastic (eps )
sig = phase*sig_P1+(1.-phase)*sig_P2
K4 = phase*K4_P1 +(1.-phase)*K4_P2
return sig,K4,epse,ep
# ----------------------------- NEWTON ITERATIONS -----------------------------
# initialize: stress and strain tensor, history
sig = np.zeros([3,3,Nx,Ny,Nz])
eps = np.zeros([3,3,Nx,Ny,Nz])
eps_t = np.zeros([3,3,Nx,Ny,Nz])
epse_t = np.zeros([3,3,Nx,Ny,Nz])
ep_t = np.zeros([ Nx,Ny,Nz])
# initial constitutive response / tangent
sig,K4,epse,ep = constitutive(eps,eps_t,epse_t,ep_t)
# set macroscopic loading
DE = np.zeros([3,3,Nx,Ny,Nz])
DE[0,1] += 0.05
DE[1,0] += 0.05
# initial residual: distribute "DE" over grid using "K4"
b = -G_K_deps(DE)
eps += DE
# compute DOF-normalization, set Newton iteration counter
En = np.linalg.norm(eps)
iiter = 0
# iterate as long as the iterative update does not vanish
while True:
# solve linear system using the Conjugate Gradient iterative solver
depsm,_ = sp.cg(tol=1.e-14,
A = sp.LinearOperator(shape=(ndof,ndof),matvec=G_K_deps,dtype='float'),
b = b,
)
# add solution of linear system to DOFs
eps += depsm.reshape(3,3,Nx,Ny,Nz)
# new residual
sig,K4,epse,ep = constitutive(eps,eps_t,epse_t,ep_t)
b = -G(sig)
# check for convergence
print('{0:10.2e}'.format(np.linalg.norm(depsm)/En))
if np.linalg.norm(depsm)/En<1.e-6 and iiter>0: break
# update Newton iteration counter
iiter += 1
# store history
ep_t = np.array(ep ,copy=True)
epse_t = np.array(epse,copy=True)
eps_t = np.array(eps ,copy=True)