-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdataset_utils.py
257 lines (224 loc) · 9.85 KB
/
dataset_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import os.path
import sys
sys.path.insert(0, os.path.abspath('axolotl/src'))
import datasets
import torch
import yaml
from tqdm import tqdm
from axolotl.utils.data import prepare_dataset
from axolotl.utils.dict import DictDefault
from axolotl.utils.trainer import process_datasets_for_packing
from utils import is_main_process, zero_first
NUM_PROC = min(64, os.cpu_count())
def yield_sequences_from_token_batch(tokenizer, token_batch, sequence_len):
# Initialize sequence_tokens with BOS token if it exists
sequence_tokens = [tokenizer.bos_token_id] if tokenizer.bos_token_id is not None else []
for tokens in tqdm(token_batch):
tokens = tokens.tolist()
assert len(tokens) > 0, 'Empty tokens list'
assert tokens[-1] != tokenizer.eos_token_id, f'Token list already ends with EOS: {tokens[-1]}'
tokens.append(tokenizer.eos_token_id)
idx = 0
# Skip the auto-generated BOS token if present
if tokenizer.bos_token_id is not None and tokens[0] == tokenizer.bos_token_id:
idx += 1
while idx < len(tokens):
# Calculate how many tokens are needed to fill the sequence
need = sequence_len - len(sequence_tokens)
taken = tokens[idx : idx + need]
idx += len(taken)
sequence_tokens.extend(taken)
if len(sequence_tokens) >= sequence_len:
assert len(sequence_tokens) == sequence_len
yield sequence_tokens
# Reset sequence_tokens with BOS token if it exists
sequence_tokens = [tokenizer.bos_token_id] if tokenizer.bos_token_id is not None else []
# yield anything remaining
# TODO: disabled until I get training working with variable length sequences
# if len(sequence_tokens) > 0:
# yield sequence_tokens
def slice_into_chunks(x, sequence_len, overlap=0):
result = []
step = sequence_len - overlap
for i in range(0, len(x), step):
result.append(x[i : i + sequence_len])
return result
def load_raw_dataset(dataset_path, tokenizer, sequence_len, eval_size, overlap=0, subsample_documents=None):
if dataset_path.endswith('.txt'):
dataset = datasets.load_dataset('text', data_files=dataset_path, sample_by='document')['train']
elif dataset_path.endswith('.json') or dataset_path.endswith('.jsonl'):
dataset = datasets.load_dataset('json', data_files=dataset_path)['train']
else:
raise NotImplementedError()
dataset.set_format(type='torch')
if subsample_documents:
dataset = dataset.shuffle(seed=13).select(list(range(int(subsample_documents * len(dataset)))))
dataset = dataset.map(
lambda x: tokenizer(x['text']),
batched=True,
batch_size=10,
remove_columns=dataset.column_names,
desc='tokenizing',
num_proc=NUM_PROC,
)
# TODO: maybe do it this way instead
# dataset = dataset.map(lambda x: {'tokens': slice_into_chunks(x['tokens'][0], sequence_len, overlap=overlap)}, batched=True, batch_size=1)
dataset = dataset.map(
lambda x: {'input_ids': list(yield_sequences_from_token_batch(tokenizer, x['input_ids'], sequence_len))},
batched=True,
batch_size=None,
remove_columns=dataset.column_names,
desc='splitting',
)
dataset = dataset.map(
lambda x: {'attention_mask': torch.ones_like(x['input_ids']), 'labels': x['input_ids']},
desc='adding attention_mask and labels',
)
if eval_size > 0:
split_datasets = dataset.train_test_split(test_size=eval_size, shuffle=True, seed=42)
train_data = split_datasets['train']
eval_data = split_datasets['test']
else:
train_data = dataset
eval_data = None
return train_data, eval_data
def load_axolotl_dataset(dataset_path, tokenizer, sequence_len, eval_size):
with open(dataset_path) as f:
cfg = yaml.safe_load(f.read())
if 'val_set_size' not in cfg:
cfg['val_set_size'] = 0 if eval_size is None else eval_size
cfg['sequence_len'] = sequence_len
cfg['tokenizer_config'] = 'dummy'
# these two don't matter, but they have to be set
cfg['batch_size'] = 1
cfg['num_epochs'] = 1
cfg = DictDefault(cfg)
train_data, eval_data, *_ = prepare_dataset(cfg, tokenizer)
train_data.set_format(type='torch')
if eval_data is not None:
eval_data.set_format(type='torch')
# This used to always be called, but Axolotl changed it at some point. It drops examples longer
# than the sequence length, so make sure we call it.
with zero_first(is_main_process()):
train_data, eval_data = process_datasets_for_packing(cfg, train_data, eval_data)
return train_data, eval_data
def load_single_dataset(dataset_path, dataset_type, tokenizer, sequence_len, eval_size, subsample=None):
if dataset_type in ['textfile', 'doclist']:
with zero_first(is_main_process()):
train_data, eval_data = load_raw_dataset(dataset_path, tokenizer, sequence_len, eval_size)
elif dataset_type == 'axolotl':
train_data, eval_data = load_axolotl_dataset(dataset_path, tokenizer, sequence_len, eval_size)
else:
raise NotImplementedError()
train_data = train_data.shuffle(seed=42)
if eval_data is not None:
eval_data = eval_data.shuffle(seed=42)
if subsample is not None:
assert 0 < subsample < 1
train_data = train_data.select(range(int(len(train_data) * subsample)))
if eval_data is not None:
eval_data = eval_data.select(range(int(len(eval_data) * subsample)))
def add_length(x):
length = len(x['input_ids'])
if 'rejected_input_ids' in x:
length = max(length, len(x['rejected_input_ids']))
return {'length': length}
with zero_first(is_main_process()):
train_data = train_data.map(add_length, desc='adding length field', num_proc=NUM_PROC)
if eval_data is not None:
eval_data = eval_data.map(add_length, desc='adding length field', num_proc=NUM_PROC)
if 'prompt_attention_mask' in train_data.column_names:
train_data = train_data.remove_columns('prompt_attention_mask')
if eval_data is not None:
eval_data = eval_data.remove_columns('prompt_attention_mask')
if is_main_process():
print(f'train_data size: {len(train_data)}')
if eval_data is not None:
print(f'eval_data size: {len(eval_data)}')
return train_data, eval_data
def combine_datasets(dataset_list, config, sample_weights):
sample_weights = torch.tensor(sample_weights, dtype=torch.float32)
mode = config.get('dataset_combination_mode', 'concatenate')
if mode == 'concatenate':
dataset = datasets.concatenate_datasets(dataset_list)
elif mode == 'interleave':
if 'batch_size_tokens' in config:
# batches are formed so they have equal token counts, so interleave datasets based on token counts, not rows
avg_lengths = torch.tensor(
[dataset['length'].to(torch.float32).mean() for dataset in dataset_list], dtype=torch.float32
)
sample_weights = sample_weights / avg_lengths
sample_weights = sample_weights.to(
torch.float64
) # float64 or interleave_datasets complains that probs don't sum to 1
probs = sample_weights / sample_weights.sum()
dataset = datasets.interleave_datasets(
dataset_list,
probabilities=probs,
seed=42,
stopping_strategy=config.get('dataset_interleave_stopping_strategy', 'first_exhausted'),
)
else:
raise ValueError(mode)
return dataset
def load_datasets(config, tokenizer):
if 'datasets' not in config:
raise ValueError('Need to specify at least one dataset')
train_datasets = []
sample_weights = []
eval_datasets = {}
i = 0
for dataset_config in config['datasets']:
if 'name' in dataset_config:
name = dataset_config['name']
else:
name = f'dataset{i}'
i += 1
sample_weights.append(dataset_config.get('sample_weight', 1.0))
train, eval = load_single_dataset(
dataset_config['dataset_path'],
dataset_config['dataset_type'],
tokenizer,
dataset_config['sequence_len'],
dataset_config.get('eval_size', 0),
subsample=dataset_config.get('subsample', None),
)
train_datasets.append(train)
if eval is not None:
eval_datasets[name] = eval
for dataset_config in config.get('eval_datasets', []):
if 'name' in dataset_config:
name = dataset_config['name']
else:
name = f'dataset{i}'
i += 1
eval, _ = load_single_dataset(
dataset_config['dataset_path'],
dataset_config['dataset_type'],
tokenizer,
dataset_config['sequence_len'],
eval_size=0,
subsample=dataset_config.get('subsample', None),
)
eval_datasets[name] = eval
if len(train_datasets) == 1:
train_dataset = train_datasets[0]
else:
with zero_first(is_main_process()):
train_dataset = combine_datasets(train_datasets, config, sample_weights=sample_weights)
return train_dataset, eval_datasets
# for testing
if __name__ == '__main__':
import transformers
# from datasets import disable_caching
# disable_caching()
tokenizer = transformers.AutoTokenizer.from_pretrained(
sys.argv[1], local_files_only=True, use_fast=False, legacy=True
)
tokenizer.pad_token_id = 0
tokenizer.padding_side = 'right'
train_data1, eval_data1 = load_raw_dataset('/home/anon/data/test/txt/*.txt', tokenizer, 100, 0.5)
train_data2, eval_data2 = load_raw_dataset('/home/anon/data/test/json/*.jsonl', tokenizer, 100, 0.5)
print(len(train_data1))
print(len(train_data2))