-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathengine.py
979 lines (845 loc) · 41.5 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
from collections import deque
import deepspeed
import torch
from deepspeed import comm as dist
from deepspeed.accelerator import get_accelerator
from deepspeed.runtime import utils as ds_utils
from deepspeed.runtime.activation_checkpointing import checkpointing as ds_checkpointing
from deepspeed.runtime.config import DeepSpeedConfig
from deepspeed.runtime.pipe import p2p, schedule
from deepspeed.runtime.pipe.engine import (
BATCH_INPUT_TIMER,
PIPE_RECV_GRAD_TIMER,
PIPE_RECV_INPUT_TIMER,
PIPE_SEND_GRAD_TIMER,
PIPE_SEND_OUTPUT_TIMER,
TRAIN_BATCH_TIMER,
PipelineEngine,
)
from deepspeed.runtime.pipe.module import LayerSpec, PipelineModule
from deepspeed.runtime.pipe.schedule import (
BackwardPass,
BufferOpInstruction,
ForwardPass,
OptimizerStep,
PipeInstruction,
PipeSchedule,
RecvActivation,
RecvGrad,
ReduceGrads,
ReduceTiedGrads,
SendActivation,
SendGrad,
_is_even,
_is_odd,
)
from deepspeed.runtime.pipe.topology import ProcessTopology
from deepspeed.runtime.utils import PartitionedTensor
from torch import nn
from utils import eta_str, log
def initialize(
args=None, model=None, model_parameters=None, optimizer=None, lora_model=None, config=None, tokenizer=None
):
assert model is not None, 'deepspeed.initialize requires a model'
dist_backend = get_accelerator().communication_backend_name()
dist.init_distributed(dist_backend=dist_backend)
if hasattr(args, 'deepspeed_config') and args.deepspeed_config is not None:
config = args.deepspeed_config
mpu = model.mpu()
config_class = DeepSpeedConfig(config, mpu)
engine = CustomPipelineEngine(
args=args,
model=model,
optimizer=optimizer,
model_parameters=model_parameters,
mpu=mpu,
config=config,
config_class=config_class,
lora_model=lora_model,
tokenizer=tokenizer,
)
return engine, engine.optimizer
class LoadMicroBatchMultipleBuffers(PipeInstruction):
def __init__(self, *buffer_ids, **kwargs):
super().__init__(buffer_ids=buffer_ids, **kwargs)
class ReferenceLogitsForwardPass(BufferOpInstruction):
pass
class CustomPipelineEngine(PipelineEngine):
def __init__(self, *args, lora_model=None, tokenizer=None, **kwargs):
super().__init__(*args, **kwargs)
self.total_steps = None
self.etas = deque()
self.rl_config = {}
# Assign list to avoid registering the nn.Module
self.lora_model = [lora_model]
self.tokenizer = tokenizer
eos_token_ids = set()
if self.tokenizer is not None and self.tokenizer.eos_token_id is not None:
eos_token_ids.add(self.tokenizer.eos_token_id)
model_config = self.module.model.config
if model_config.eos_token_id:
model_eos_token_ids = model_config.eos_token_id
if isinstance(model_eos_token_ids, int):
model_eos_token_ids = [model_eos_token_ids]
eos_token_ids.update(model_eos_token_ids)
self.eos_token_ids = eos_token_ids
def configure_rl(self, rl_config):
self.rl_config = rl_config
def train_batch(self):
if not torch._C.is_grad_enabled():
raise RuntimeError('train_batch() requires gradients enabled. Use eval_batch() instead.')
# sequence length may change between macro batches (but not between gradient accumulation steps)
self.reset_activation_shape()
self.module.train()
self._compute_loss = True
# Do the work
self.timers(TRAIN_BATCH_TIMER).start()
if self.rl_config.get('method', None) == 'dpo':
sched = DPOTrainSchedule(micro_batches=self.micro_batches, stages=self.num_stages, stage_id=self.stage_id)
else:
sched = schedule.TrainSchedule(
micro_batches=self.micro_batches, stages=self.num_stages, stage_id=self.stage_id
)
self._exec_schedule(sched)
agg_losses = self._aggregate_total_losses()
# Actual training loss is always the first item.
self.agg_train_loss = agg_losses[0].mean()
self.timers(TRAIN_BATCH_TIMER).stop()
if self.global_steps % self.steps_per_print() == 0:
if self.global_rank == 0:
elapsed = self.timers(TRAIN_BATCH_TIMER).elapsed(reset=True) / 1000.0
iter_time = elapsed / self.steps_per_print()
eta = iter_time * (self.total_steps - self.global_steps)
self.etas.append(eta)
while len(self.etas) > 10:
self.etas.popleft()
rolling_eta = sum(self.etas) / len(self.etas)
tput = self.train_batch_size() / iter_time
log(
f'step: {self.global_steps:>5} / {self.total_steps:>5} '
f'loss: {self.agg_train_loss:0.4f} '
f'iter time (s): {iter_time:0.3f} '
f'samples/sec: {tput:0.3f} '
f'eta: {eta_str(rolling_eta)} '
)
else:
self.timers(TRAIN_BATCH_TIMER).elapsed(reset=True)
# Monitoring
if self.global_rank == 0 and self.monitor.enabled:
self.summary_events = [
('Train/Samples/train_loss', self.agg_train_loss.mean().item(), self.global_samples)
]
self.monitor.write_events(self.summary_events)
if self.wall_clock_breakdown() and self.global_steps % self.steps_per_print() == 0:
self.timers.log(
[
PIPE_SEND_OUTPUT_TIMER,
PIPE_SEND_GRAD_TIMER,
PIPE_RECV_INPUT_TIMER,
PIPE_RECV_GRAD_TIMER,
]
)
return agg_losses
def eval_batch(self, data_iter):
# sequence length may change between macro batches (but not between gradient accumulation steps)
self.reset_activation_shape()
self.module.eval()
self._compute_loss = True
# Use the provided data iterator
train_iterator = self.data_iterator
self.set_dataiterator(data_iter)
# Do the work
if self.rl_config.get('method', None) == 'dpo':
sched = DPOInferenceSchedule(
micro_batches=self.micro_batches, stages=self.num_stages, stage_id=self.stage_id
)
else:
sched = schedule.InferenceSchedule(
micro_batches=self.micro_batches, stages=self.num_stages, stage_id=self.stage_id
)
# prevent dead-lock with multiple evals sequence
dist.barrier()
with torch.no_grad():
self._exec_schedule(sched)
# list of losses
agg_eval_losses = self._aggregate_total_losses()
if self.global_rank == 0 and self.monitor.enabled:
self.summary_events = [('Train/Samples/eval_loss', agg_eval_losses[0].mean().item(), self.global_samples)]
self.monitor.write_events(self.summary_events)
# Restore the training iterator
self.set_dataiterator(train_iterator)
return agg_eval_losses
def sample_batch(self, prompts, max_new_tokens=1e9):
assert isinstance(prompts, (list, tuple))
self.reset_activation_shape()
self.module.eval()
self.module.set_sampling_mode(True)
train_iterator = self.data_iterator
original_micro_batches = self.micro_batches
self.micro_batches = len(prompts)
dist.barrier()
if self.is_first_stage():
# Tokenizer returns dict with 'input_ids', 'attention_mask' keys.
# Tensors have batch dimension because we pass list of prompts.
examples = []
for prompt in prompts:
if not isinstance(prompt, (list, tuple)):
prompt = [prompt]
examples.append(self.tokenizer(prompt, return_tensors='pt', padding=True))
else:
examples = None
with torch.no_grad():
examples = self._exec_sampling_schedule(examples, max_new_tokens=max_new_tokens)
text = [self.tokenizer.batch_decode(example['input_ids']) for example in examples]
self.set_dataiterator(train_iterator)
self.micro_batches = original_micro_batches
self.module.set_sampling_mode(False)
return text
def _aggregate_total_losses(self):
all_agg_outputs = []
# gather each output for all the gradient accumulation steps
grouped_outputs = [list(x) for x in zip(*self.fwd_outputs)]
# if any are scalar, make them dim 1 so we can concat across DP ranks
for outputs in grouped_outputs:
for i, output in enumerate(outputs):
if output.dim() == 0:
outputs[i] = torch.unsqueeze(output, 0)
if self.is_last_stage():
agg_sizes = []
# loop to gather all the outputs across DP ranks
for outputs in grouped_outputs:
# concat all the grad_accum_steps
concat_outputs = torch.cat(outputs)
if self.is_data_parallel:
# might be different sizes across DP ranks, so, gather all the sizes
sizes = [None] * self.grid.get_data_parallel_world_size()
torch.distributed.all_gather_object(
sizes, concat_outputs.size(), group=self.grid.get_data_parallel_group()
)
# once we know all the sizes we can gather the results across DP ranks
gather_result = [torch.zeros(size).to(self.device) for size in sizes]
dist.all_gather(gather_result, concat_outputs, group=self.grid.get_data_parallel_group())
# and finally, concat
agg_output = torch.cat(gather_result)
else:
agg_output = concat_outputs
agg_sizes.append(agg_output.size())
all_agg_outputs.append(agg_output)
# send the sizes, then broadcast to the PP ranks
if self.is_pipe_parallel:
torch.distributed.broadcast_object_list(
[agg_sizes], src=self.global_rank, group=self.grid.get_pipe_parallel_group()
)
for agg_output in all_agg_outputs:
dist.broadcast(tensor=agg_output, src=self.global_rank, group=self.grid.get_pipe_parallel_group())
else:
# get the outputs from the last stage
src_rank = self.grid.stage_to_global(self.num_stages - 1)
assert src_rank in self.grid.pp_group
result = [None]
torch.distributed.broadcast_object_list(result, src=src_rank, group=self.grid.get_pipe_parallel_group())
agg_sizes = result[0]
for agg_size in agg_sizes:
agg_output = torch.zeros(agg_size).to(self.device)
dist.broadcast(tensor=agg_output, src=src_rank, group=self.grid.get_pipe_parallel_group())
all_agg_outputs.append(agg_output)
return all_agg_outputs
# We override this to handle the model returning a list of "losses", but only doing backprop on the first.
def _exec_forward_pass(self, buffer_id):
self.tput_timer.start()
self.mem_status('BEFORE FWD', reset_max=True)
if isinstance(self.pipe_buffers['inputs'][buffer_id], tuple):
inputs = tuple(t.clone() for t in self.pipe_buffers['inputs'][buffer_id])
else:
inputs = self.pipe_buffers['inputs'][buffer_id].clone()
# collect the partitioned input from the previous stage
if self.is_pipe_partitioned and not self.is_first_stage():
part_input = PartitionedTensor.from_meta(
meta=inputs[0], local_part=inputs[1], group=self.grid.get_slice_parallel_group()
)
inputs = (part_input.full(), *inputs[2:])
inputs[0].requires_grad = True
# skip mask
# inputs[1].requires_grad = True
part_input = None
inputs = inputs[0] if len(inputs) == 1 else inputs
self.pipe_buffers['inputs'][buffer_id] = inputs
# inputs has no gradient because it is from a cloned tensor
outputs = super(PipelineEngine, self).forward(inputs)
# Reset activation checkpointing buffers.
# Need to call this between evaluation iterations
if not self.module.training:
ds_checkpointing.reset()
# Partition the outputs if we are not the last stage
if self.is_pipe_partitioned and not self.is_last_stage():
if isinstance(outputs, tuple):
first_output = outputs[0]
# TODO: Improve pipe partitioning to pass multiple tensors that require grads
assert all(torch.is_tensor(elt) and elt.requires_grad is False for elt in outputs[1:])
outputs_tail = outputs[1:]
elif torch.is_tensor(outputs):
first_output = outputs
outputs_tail = []
else:
raise ValueError('expecting a tensor or a tuple of tensors')
part = PartitionedTensor(tensor=first_output, group=self.grid.get_slice_parallel_group())
# Clear the large output data, but save the computation graph
first_output.data = torch.zeros(1)
self.pipe_buffers['output_tensors'][buffer_id] = first_output
# Inject the partitioned tensor into the output before sending
outputs = (part.to_meta(), part.data(), *outputs_tail)
part = None
self.pipe_buffers['outputs'][buffer_id] = outputs
# Optionally compute loss on the last device
if self.is_last_stage():
if self._compute_loss and self.module.loss_fn is not None:
labels = self.pipe_buffers['labels'][buffer_id]
losses = self.module.loss_fn(outputs, labels)
else:
# Some models just return loss from forward()
losses = outputs
if self.eval_return_logits:
self.outputs = outputs
if isinstance(losses, torch.Tensor):
self.loss = losses
self.fwd_outputs.append([self.loss.detach()])
else:
self.loss = losses[0]
self.fwd_outputs.append([l.detach() for l in losses])
def _exec_load_micro_batch_multiple_buffers(self, buffer_ids):
if self.wall_clock_breakdown():
self.timers(BATCH_INPUT_TIMER).start()
batch = self._next_batch()
if self.is_first_stage():
loaded = None
if torch.is_tensor(batch[0]):
loaded = batch[0].clone().to(self.device).detach()
if (
self._config.pipeline['activation_checkpoint_interval'] > 0
and self._config.pipeline['use_reentrant']
):
loaded.requires_grad = loaded.is_floating_point()
else:
assert isinstance(batch[0], (tuple, list))
# Assume list or tuple
loaded = []
for x in batch[0]:
assert torch.is_tensor(x)
mine = x.clone().detach().to(self.device)
if (
self._config.pipeline['activation_checkpoint_interval'] > 0
and self._config.pipeline['use_reentrant']
):
mine.requires_grad = mine.is_floating_point()
loaded.append(mine)
loaded = tuple(loaded)
for buffer_id in buffer_ids:
self.pipe_buffers['inputs'][buffer_id] = loaded
if self.is_last_stage():
loaded = batch[1]
if torch.is_tensor(batch[1]):
loaded = batch[1].to(self.device)
# XXX: torch 1.6.0 DataLoader will auto convert tuple to list
elif isinstance(batch[1], (tuple, list)):
loaded = []
for x in batch[1]:
assert torch.is_tensor(x)
x = x.to(self.device).detach()
loaded.append(x)
loaded = tuple(loaded)
for buffer_id in buffer_ids:
self.pipe_buffers['labels'][buffer_id] = loaded
if self.wall_clock_breakdown():
self.timers(BATCH_INPUT_TIMER).stop()
@torch.no_grad()
def _exec_reference_logits_forward_pass(self, buffer_id):
self.lora_model[0].disable_adapter_layers()
self.module.set_dpo_reference_mode(True)
if isinstance(self.pipe_buffers['inputs'][buffer_id], tuple):
inputs = tuple(t.clone() for t in self.pipe_buffers['inputs'][buffer_id])
else:
inputs = self.pipe_buffers['inputs'][buffer_id].clone()
# collect the partitioned input from the previous stage
if self.is_pipe_partitioned and not self.is_first_stage():
if self.pipe_partition_input_meta_cache is None:
self.pipe_partition_input_meta_cache = inputs[0].to('cpu')
part_input = PartitionedTensor.from_meta(
meta=self.pipe_partition_input_meta_cache,
local_part=inputs[1],
group=self.grid.get_slice_parallel_group(),
)
inputs = (part_input.full(), *inputs[2:])
inputs[0].requires_grad = True
# skip mask
# inputs[1].requires_grad = True
part_input = None
inputs = inputs[0] if len(inputs) == 1 else inputs
self.pipe_buffers['inputs'][buffer_id] = inputs
# inputs has no gradient because it is from a cloned tensor
outputs = super(PipelineEngine, self).forward(inputs)
# Reset activation checkpointing buffers.
# Need to call this between evaluation iterations
if not self.module.training:
ds_checkpointing.reset()
# Partition the outputs if we are not the last stage
if self.is_pipe_partitioned and not self.is_last_stage():
if isinstance(outputs, tuple):
first_output = outputs[0]
# TODO: Improve pipe partitioning to pass multiple tensors that require grads
assert all(torch.is_tensor(elt) and elt.requires_grad is False for elt in outputs[1:])
outputs_tail = outputs[1:]
elif torch.is_tensor(outputs):
first_output = outputs
outputs_tail = []
else:
raise ValueError('expecting a tensor or a tuple of tensors')
part = PartitionedTensor(tensor=first_output, group=self.grid.get_slice_parallel_group())
# Clear the large output data, but save the computation graph
first_output.data = torch.zeros(1, device=first_output.data.device)
self.pipe_buffers['output_tensors'][buffer_id] = first_output
# Inject the partitioned tensor into the output before sending
outputs = (part.to_meta(), part.data(), *outputs_tail)
part = None
self.pipe_buffers['outputs'][buffer_id] = outputs
self.lora_model[0].enable_adapter_layers()
self.module.set_dpo_reference_mode(False)
def _exec_send_micro_batch_id(self, send_micro_batch_id):
assert isinstance(send_micro_batch_id, int)
if self.num_stages == 1:
return send_micro_batch_id
send_micro_batch_id = torch.tensor(send_micro_batch_id)
recv_micro_batch_id = torch.tensor(-1)
if _is_even(self.stage_id):
if not self.is_last_stage():
p2p.send(send_micro_batch_id, self.next_stage)
if not self.is_first_stage():
p2p.recv(recv_micro_batch_id, self.prev_stage)
else:
if not self.is_first_stage():
p2p.recv(recv_micro_batch_id, self.prev_stage)
if not self.is_last_stage():
p2p.send(send_micro_batch_id, self.next_stage)
# last stage sends to first stage
if self.is_first_stage():
p2p.recv(recv_micro_batch_id, self.num_stages - 1)
if self.is_last_stage():
p2p.send(send_micro_batch_id, 0)
return recv_micro_batch_id.item()
def _exec_load_micro_batch_for_sampling(self, buffer_id, inputs):
loaded = (
inputs['input_ids'],
inputs['attention_mask'],
torch.tensor([0]), # labels must be provided, so use a dummy
inputs['micro_batch_id'],
)
loaded = tuple(x.clone().detach().to(self.device) for x in loaded)
self.pipe_buffers['inputs'][buffer_id] = loaded
@torch.no_grad()
def _exec_sampling_forward_pass(self, buffer_id):
if isinstance(self.pipe_buffers['inputs'][buffer_id], tuple):
inputs = tuple(t.clone() for t in self.pipe_buffers['inputs'][buffer_id])
else:
inputs = self.pipe_buffers['inputs'][buffer_id].clone()
# collect the partitioned input from the previous stage
if self.is_pipe_partitioned and not self.is_first_stage():
if self.pipe_partition_input_meta_cache is None:
self.pipe_partition_input_meta_cache = inputs[0].to('cpu')
part_input = PartitionedTensor.from_meta(
meta=self.pipe_partition_input_meta_cache,
local_part=inputs[1],
group=self.grid.get_slice_parallel_group(),
)
inputs = (part_input.full(), *inputs[2:])
inputs[0].requires_grad = True
# skip mask
# inputs[1].requires_grad = True
part_input = None
inputs = inputs[0] if len(inputs) == 1 else inputs
self.pipe_buffers['inputs'][buffer_id] = inputs
# inputs has no gradient because it is from a cloned tensor
outputs = super(PipelineEngine, self).forward(inputs)
# Reset activation checkpointing buffers.
# Need to call this between evaluation iterations
if not self.module.training:
ds_checkpointing.reset()
# Partition the outputs if we are not the last stage
if self.is_pipe_partitioned and not self.is_last_stage():
if isinstance(outputs, tuple):
first_output = outputs[0]
# TODO: Improve pipe partitioning to pass multiple tensors that require grads
assert all(torch.is_tensor(elt) and elt.requires_grad is False for elt in outputs[1:])
outputs_tail = outputs[1:]
elif torch.is_tensor(outputs):
first_output = outputs
outputs_tail = []
else:
raise ValueError('expecting a tensor or a tuple of tensors')
part = PartitionedTensor(tensor=first_output, group=self.grid.get_slice_parallel_group())
# Clear the large output data, but save the computation graph
first_output.data = torch.zeros(1, device=first_output.data.device)
self.pipe_buffers['output_tensors'][buffer_id] = first_output
# Inject the partitioned tensor into the output before sending
outputs = (part.to_meta(), part.data(), *outputs_tail)
part = None
self.pipe_buffers['outputs'][buffer_id] = outputs
def _sample_from_logits(self, buffer_id):
logits = self.pipe_buffers['outputs'][buffer_id]
input_ids = torch.argmax(logits, dim=-1)
return input_ids
def _valid_stage(self, stage_id):
return 0 <= stage_id < self.num_stages
def _valid_micro_batch(self, micro_batch_id):
return 0 <= micro_batch_id < self.micro_batches
def _exec_sampling_schedule(self, examples, max_new_tokens=1e9):
assert isinstance(examples, list) and len(examples) > 0
# Reserve and reset buffers.
self._reserve_pipe_buffers(2)
self.fwd_outputs = []
eos_token_ids = torch.tensor(list(self.eos_token_ids))
for example in examples:
example['done'] = torch.tensor([False] * example['input_ids'].size(0))
example['num_new_tokens'] = 0
num_batches_done = 0
num_batches = len(examples)
if self.is_first_stage():
queue = deque()
for i, example in enumerate(examples):
queue.append(
(
i,
{
'input_ids': example['input_ids'],
'attention_mask': example['attention_mask'],
'micro_batch_id': torch.tensor(i),
},
)
)
step_id = 0
prev_micro_batch_id = -1
while True:
micro_batch_id = -1
# Alternate send/recv buffers
if _is_even(self.stage_id):
recv_buf = step_id % 2
send_buf = (step_id + 1) % 2
else:
recv_buf = (step_id + 1) % 2
send_buf = step_id % 2
# Send prev_micro_batch_id to next stage. Last stage wraps around and sends to first stage.
micro_batch_id = self._exec_send_micro_batch_id(prev_micro_batch_id)
batch_size = examples[micro_batch_id]['input_ids'].size(0)
# If last stage did a forward pass, send the sampled input_ids to the first stage.
if self.is_first_stage() and self._valid_micro_batch(micro_batch_id):
if self.num_stages > 1:
input_ids = torch.tensor([[-1] * batch_size])
p2p.recv(input_ids, self.num_stages - 1)
assert input_ids.size(-1) == 1
input_ids = input_ids.to('cpu')
prev_done = examples[micro_batch_id]['done']
# Determine which items in the batch are done generating.
done = prev_done | (input_ids == eos_token_ids).any(-1)
examples[micro_batch_id]['done'] = done
batch_done = done.all().item()
# Output pad token and 0 attention mask for items in the batch that are already done.
prev_done_reshaped = prev_done.unsqueeze(-1)
input_ids = torch.where(prev_done_reshaped, self.tokenizer.pad_token_id, input_ids)
attention_mask_extension = torch.where(prev_done_reshaped, 0, 1)
input_ids = torch.cat([examples[micro_batch_id]['input_ids'], input_ids], dim=-1)
examples[micro_batch_id]['input_ids'] = input_ids
attention_mask = torch.cat(
[examples[micro_batch_id]['attention_mask'], attention_mask_extension], dim=-1
)
examples[micro_batch_id]['attention_mask'] = attention_mask
examples[micro_batch_id]['num_new_tokens'] += 1
if examples[micro_batch_id]['num_new_tokens'] >= max_new_tokens:
break
if batch_done:
num_batches_done += 1
else:
# Model needs full attention mask, but only most recent sampled input_id.
queue.append(
(
micro_batch_id,
{
'input_ids': input_ids[..., -1:],
'attention_mask': attention_mask,
'micro_batch_id': torch.tensor(micro_batch_id),
},
)
)
if self.is_last_stage() and self._valid_micro_batch(prev_micro_batch_id) and self.num_stages > 1:
p2p.send(input_ids, 0)
if self.is_first_stage():
if len(queue) > 0:
micro_batch_id, inputs = queue.popleft()
self._exec_load_micro_batch_for_sampling(recv_buf, inputs)
if _is_even(self.stage_id):
if self._valid_stage(self.next_stage):
if self._valid_micro_batch(prev_micro_batch_id):
self._exec_send_activations(send_buf)
if self._valid_stage(self.prev_stage):
if self._valid_micro_batch(micro_batch_id):
self._exec_recv_activations(recv_buf)
else:
if self._valid_stage(self.prev_stage):
if self._valid_micro_batch(micro_batch_id):
self._exec_recv_activations(recv_buf)
if self._valid_stage(self.next_stage):
if self._valid_micro_batch(prev_micro_batch_id):
self._exec_send_activations(send_buf)
if self._valid_micro_batch(micro_batch_id):
self._exec_sampling_forward_pass(recv_buf)
if self.is_last_stage():
input_ids = self._sample_from_logits(recv_buf)
prev_micro_batch_id = micro_batch_id
step_id += 1
if num_batches_done == num_batches:
break
for example in examples:
del example['done']
del example['num_new_tokens']
return examples
# make our forward pass method apply
PipelineEngine._INSTRUCTION_MAP[schedule.ForwardPass] = _exec_forward_pass
PipelineEngine._INSTRUCTION_MAP[LoadMicroBatchMultipleBuffers] = _exec_load_micro_batch_multiple_buffers
PipelineEngine._INSTRUCTION_MAP[ReferenceLogitsForwardPass] = _exec_reference_logits_forward_pass
class ColumnMajorParallelTopology(ProcessTopology):
"""
A topology specialisation for hybrid data+pipeline parallelism optimized for LoRA training:
- Sends high-volume "per token" hidden states over PCIe/NVLink.
- Sends lower-volume "per step" LoRA gradient reductions over Ethernet/InfiniBand.
"""
def __init__(self, num_pp, num_dp):
# Swap the axes and dims to change the rank mapping
super().__init__(axes=['data', 'pipe'], dims=[num_dp, num_pp])
class CustomPipelineModule(PipelineModule):
def __init__(self, layers, use_column_major_topology, model=None, **kwargs):
# Assign to list to avoid registering the nn.Module
self._model = [model]
# Hybrid LoRA data+pipeline parallelism may want to use "column-major" layout
if use_column_major_topology:
world_size = dist.get_world_size()
num_stages = kwargs.get('num_stages')
if num_stages > 1 and world_size > 1:
assert world_size % num_stages == 0, (
f'world_size ({world_size}) must be divisible by num_stages ({num_stages})'
)
num_dp = world_size // num_stages
kwargs['topology'] = ColumnMajorParallelTopology(num_pp=num_stages, num_dp=num_dp)
super().__init__(layers, **kwargs)
@property
def model(self):
return self._model[0]
def set_dpo_reference_mode(self, dpo_reference_mode):
self.model.set_dpo_reference_mode(dpo_reference_mode)
def set_sampling_mode(self, sampling_mode):
self.model.set_sampling_mode(sampling_mode)
def _partition_layers(self, method='uniform'):
num_stages = self._topo.get_dim('pipe')
stage_id = self._topo.get_coord(self.global_rank).pipe
if self.global_rank == 0:
print(f'Partitioning pipeline stages with method {method}')
method = method.lower()
estimated_sizes = None
# Each stage gets a simple uniform number of layers.
if method == 'uniform':
num_layers = len(self._layer_specs)
self.parts = ds_utils.partition_uniform(num_items=num_layers, num_parts=num_stages)
elif method == 'parameters':
param_counts = self._count_layer_params()
self.parts = ds_utils.partition_balanced(weights=param_counts, num_parts=num_stages)
elif method.startswith('type:'):
layertype = method.split(':')[1]
binary_weights = [0] * len(self._layer_specs)
for idx in self._find_layer_type(layertype):
binary_weights[idx] = 1
self.parts = ds_utils.partition_balanced(weights=binary_weights, num_parts=num_stages)
elif method == 'profile':
raise NotImplementedError(f'Partitioning method {method} not implemented.')
elif method == 'estimated_size':
estimated_sizes = [getattr(l, 'estimated_size', 0) for l in self._layer_specs]
self.parts = ds_utils.partition_balanced(weights=estimated_sizes, num_parts=num_stages)
else:
raise NotImplementedError(f'Partitioning method {method} not implemented.')
# Print some information on the partitioning.
if self.global_rank == 0:
for stage in range(num_stages):
start = self.parts[stage]
stop = self.parts[stage + 1]
print(f'stage={stage} layers={stop - start}')
for idx, layer in enumerate(self._layer_specs[start:stop]):
name = str(layer)
if isinstance(layer, LayerSpec):
name = layer.typename.__name__
if isinstance(layer, nn.Module):
name = layer.__class__.__name__
else:
try:
name = layer.__name__
except AttributeError:
pass
logstr = f' {idx + start:2d}: {name}'
if estimated_sizes:
es = estimated_sizes[idx + start]
logstr += f', estimated size: {es}'
print(logstr)
if self.loss_fn:
try:
print(f' loss: {self.loss_fn.__name__}')
except AttributeError:
print(f' loss: {self.loss_fn.__class__.__name__}')
deepspeed.comm.barrier()
self._set_bounds(start=self.parts[stage_id], stop=self.parts[stage_id + 1])
class DPOTrainSchedule(PipeSchedule):
"""Train schedule for DPO. Does an extra forward pass for the reference logits."""
def steps(self):
prev_micro_batch_id = -1
total_steps = 2 * (self.micro_batches + self.stages - 1)
forward_step_id = 0
for step_id in range(total_steps):
# Map the step of the pipeline to the micro-batch id and also whether it is a
# forward or backward pass step.
micro_batch_id, is_forward = self._step_to_micro_batch(step_id)
if self._valid_micro_batch(prev_micro_batch_id):
prev_buffer = self._buffer_idx(prev_micro_batch_id)
if self._valid_micro_batch(micro_batch_id):
curr_buffer = self._buffer_idx(micro_batch_id)
# Alternate send/recv buffers for reference logits forward.
num_normal_pipe_buffers = self.num_pipe_buffers() - 2
if _is_even(self.stage_id):
recv_buf = step_id % 2 + num_normal_pipe_buffers
send_buf = (step_id + 1) % 2 + num_normal_pipe_buffers
else:
recv_buf = (step_id + 1) % 2 + num_normal_pipe_buffers
send_buf = step_id % 2 + num_normal_pipe_buffers
cmds = []
# Exchange activations
if is_forward:
if self._valid_micro_batch(prev_micro_batch_id) and self._valid_stage(self.prev_stage):
cmds.append(SendGrad(prev_buffer))
if self._valid_micro_batch(micro_batch_id) and self._valid_stage(self.prev_stage):
cmds.append(RecvActivation(curr_buffer))
# Activations for reference logits.
if _is_even(self.stage_id):
if self._valid_stage(self.next_stage):
if self._valid_micro_batch(micro_batch_id - 1):
cmds.append(SendActivation(send_buf))
if self._valid_stage(self.prev_stage):
if self._valid_micro_batch(micro_batch_id):
cmds.append(RecvActivation(recv_buf))
else:
if self._valid_stage(self.prev_stage):
if self._valid_micro_batch(micro_batch_id):
cmds.append(RecvActivation(recv_buf))
if self._valid_stage(self.next_stage):
if self._valid_micro_batch(micro_batch_id - 1):
cmds.append(SendActivation(send_buf))
else:
if self._valid_micro_batch(micro_batch_id) and self._valid_stage(self.next_stage):
cmds.append(RecvGrad(curr_buffer))
if self._valid_micro_batch(prev_micro_batch_id) and self._valid_stage(self.next_stage):
cmds.append(SendActivation(prev_buffer))
# First/last stage loads
if self.stage_id == 0 or self.stage_id == self.stages - 1:
if is_forward and self._valid_micro_batch(micro_batch_id):
# Load for normal forward and reference logits forward.
cmds.append(LoadMicroBatchMultipleBuffers(curr_buffer, recv_buf))
# Computation
if self._valid_micro_batch(micro_batch_id):
if is_forward:
# Reference logits forward.
cmds.append(ReferenceLogitsForwardPass(recv_buf))
cmds.append(ForwardPass(curr_buffer))
forward_step_id += 1
else:
cmds.append(BackwardPass(curr_buffer))
# Model step at the end of the batch
if step_id == total_steps - 1:
cmds.append(ReduceTiedGrads())
cmds.append(ReduceGrads())
cmds.append(OptimizerStep())
# Prepare state for next time
prev_micro_batch_id = micro_batch_id
yield cmds
def num_pipe_buffers(self):
buffers = min(self.stages - self.stage_id, self.micro_batches)
# +2 buffers for reference logit forward pass.
return max(2, buffers) + 2
def _step_to_micro_batch(self, step_id):
if _is_even(step_id) and _is_even(self.stage_id):
micro_batch_id = self._even_step_forward_id(step_id)
is_forward = True
elif _is_odd(step_id) and _is_odd(self.stage_id):
micro_batch_id = self._odd_step_forward_id(step_id)
is_forward = True
elif _is_even(step_id) and _is_odd(self.stage_id):
micro_batch_id = self._even_step_backward_id(step_id)
is_forward = False
elif _is_odd(step_id) and _is_even(self.stage_id):
micro_batch_id = self._odd_step_backward_id(step_id)
is_forward = False
else:
assert False
return micro_batch_id, is_forward
def _even_step_forward_id(self, step_id):
base = step_id // 2
micro_batch_id = int(base - self.stage_id // 2)
return micro_batch_id
def _odd_step_forward_id(self, step_id):
base = (step_id - 1) // 2
micro_batch_id = int(base - self.stage_id // 2)
return micro_batch_id
def _even_step_backward_id(self, step_id):
base = step_id // 2
micro_batch_id = int(base - self.stages + (self.stage_id + 1) // 2)
return micro_batch_id
def _odd_step_backward_id(self, step_id):
base = ((step_id - 1) // 2) - self.stages + 1
micro_batch_id = int(base + self.stage_id // 2)
return micro_batch_id
# Override to account for the extra 2 buffers used for reference logit forward pass.
def _buffer_idx(self, micro_batch_id):
assert self._valid_micro_batch(micro_batch_id)
return micro_batch_id % (self.num_pipe_buffers() - 2)
class DPOInferenceSchedule(PipeSchedule):
def steps(self):
total_steps = self.micro_batches + self.stages - 1
for step_id in range(total_steps):
cmds = []
micro_batch_id = step_id - self.stage_id
# Alternate send/recv buffers
if _is_even(self.stage_id):
recv_buf = step_id % 2
send_buf = (step_id + 1) % 2
else:
recv_buf = (step_id + 1) % 2
send_buf = step_id % 2
ref_recv_buf = recv_buf + 2
ref_send_buf = send_buf + 2
if self.is_first_stage or self.is_last_stage:
if self._valid_micro_batch(micro_batch_id):
cmds.append(LoadMicroBatchMultipleBuffers(recv_buf, ref_recv_buf))
if _is_even(self.stage_id):
if self._valid_stage(self.next_stage):
if self._valid_micro_batch(micro_batch_id - 1):
cmds.append(SendActivation(ref_send_buf))
cmds.append(SendActivation(send_buf))
if self._valid_stage(self.prev_stage):
if self._valid_micro_batch(micro_batch_id):
cmds.append(RecvActivation(ref_recv_buf))
cmds.append(RecvActivation(recv_buf))
else:
if self._valid_stage(self.prev_stage):
if self._valid_micro_batch(micro_batch_id):
cmds.append(RecvActivation(ref_recv_buf))
cmds.append(RecvActivation(recv_buf))
if self._valid_stage(self.next_stage):
if self._valid_micro_batch(micro_batch_id - 1):
cmds.append(SendActivation(ref_send_buf))
cmds.append(SendActivation(send_buf))
if self._valid_micro_batch(micro_batch_id):
cmds.append(ReferenceLogitsForwardPass(ref_recv_buf))
cmds.append(ForwardPass(recv_buf))
yield cmds
def num_pipe_buffers(self):
return 4