-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
202 lines (168 loc) · 10.5 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import json
from PIL import Image
import gradio as gr
from gradio_client import Client
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import uvicorn
import argparse
from func1 import search_by_text, search_by_text_and_image
from func2 import search_by_dialogue, refine_query
from func3 import get_target_paths, do_retrieve
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=7000)
parser.add_argument("--workers", type=int, default=1)
args = parser.parse_args()
IMAGE_DIR = "../dataset_shared2/orig-result"
CHARACTERS = ["강효민", "박가을", "차태석", "한유현", "황윤혜"]
app = FastAPI()
origins = ["*"]
app.add_middleware(CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"])
class TextItem(BaseModel):
text_kor: str
@app.post('/search-by-text', summary="(clip-retrieval) 텍스트(장면)으로 이미지 검색",
description="장면에 대한 한국어 문장을 입력하면 이미지를 검색합니다.")
def api_search_by_text(req_json: TextItem) :
text_kor = req_json.text_kor
count = 5
client = Client(f"http://localhost:{args.port}/demo")
text_en, search_list = client.predict(api_name="/search_by_text",
input_text_kor=text_kor, input_count=count)
return {"text_en" : text_en,
"search_list" : search_list}
@app.post('/search-by-dialogue', summary="(chatgpt + LaBSE) 택스트(대사)로 이미지 검색",
description="대사에 대한 한국어 문장을 입력하면 이미지를 검색합니다.")
def api_search_by_dialogue(req_json: TextItem) :
text_kor = req_json.text_kor
count = 2
client = Client(f"http://localhost:{args.port}/demo")
search_list = client.predict(api_name="/search_by_dialogue",
query=text_kor, count=count)
return {"search_list" : search_list}
@app.post('/search-by-final', summary="텍스트(장면 & 대사)로 이미지 검색",
description="한국어 문장을 입력하면 이미지를 검색합니다.")
def api_search_by_final(req_json: TextItem) :
text_kor = req_json.text_kor
client = Client(f"http://localhost:{args.port}/demo")
middle_text, _, search_list = client.predict(api_name="/search_by_final", input_text_kor=text_kor)
return {"middle_text": middle_text,
"search_list" : search_list}
def search_by_final(input_text_kor) :
query_info_dict = refine_query(input_text_kor)
scene = query_info_dict["장면"]
dialogue = query_info_dict["대사"]
character = query_info_dict["등장인물"]
if dialogue in ['None', 'none', 'Null', 'null'] : dialogue = None
if dialogue :
search_list = search_by_dialogue(query=dialogue, count=2)
return f'{query_info_dict}\n[search_by_dialogue]', None, search_list
else :
if type(character) == list :
target_character = None
for CHARACTER in CHARACTERS :
if CHARACTER in character :
target_character = CHARACTER
break
if target_character == None :
text_en, search_list = search_by_text(scene, input_count=5)
char_img = None
else :
text_en, char_img, search_list = search_by_text_and_image(scene, target_character, 500, 500, 5)
else :
text_en, search_list = search_by_text(scene, input_count=5)
char_img = None
return f'{query_info_dict}\n[search_by_text]\n{text_en}', char_img, search_list
def parsing_json_for_display(search_list) :
outputs = []
for search in search_list :
img_path = os.path.join(IMAGE_DIR, search['image_path'])
img = Image.open(img_path).convert('RGB')
outputs.append(img)
return outputs
with gr.Blocks() as demo :
with gr.Tab("text search (clip-retrieval)") :
with gr.Row() :
with gr.Column() :
func1_input_text_kor = gr.Text(label="Input (Kor)", info="한국어로 질문을 입력하세요", value="한 학생이 울고 있는 장면")
func1_input_count = gr.Slider(label="Max count", info="응답받는 최대 개수를 설정합니다.", minimum=1, maximum=100, step=1, value=10)
func1_btn_submit = gr.Button(value="Submit", variant='primary')
with gr.Column() :
func1_output_text_en = gr.Text(label="Input (En)", info="한국어를 영어로 번역", interactive=False)
func1_output_list = gr.Json(label="Outpus")
func1_output_gallery = gr.Gallery(label="Output images", columns=5)
func1_btn_submit.click(fn=search_by_text,
inputs=[func1_input_text_kor, func1_input_count],
outputs=[func1_output_text_en, func1_output_list],
concurrency_id='default',
api_name='search_by_text').then(fn=parsing_json_for_display,
inputs=[func1_output_list],
outputs=[func1_output_gallery],
concurrency_id='default',
show_api=False)
with gr.Tab("dialogue search (chatgpt + LaBSE)") :
with gr.Row() :
with gr.Column() :
func2_input_text_kor = gr.Text(label="Input (Kor)", info="한국어로 질문을 입력하세요", value="안경 낀 사람 때리면 살인 대사 몇화인지 알려주세요")
func2_input_count = gr.Slider(label="Max count", info="응답받는 최대 개수를 설정합니다.", minimum=1, maximum=100, step=1, value=2)
func2_btn_submit = gr.Button(value="Submit", variant='primary')
with gr.Column() :
func2_output_list = gr.Json(label="Outpus")
func2_output_gallery = gr.Gallery(label="Output images", columns=5)
func2_btn_submit.click(fn=search_by_dialogue,
inputs=[func2_input_text_kor, func2_input_count],
outputs=[func2_output_list],
concurrency_id='default',
api_name='search_by_dialogue').then(fn=parsing_json_for_display,
inputs=[func2_output_list],
outputs=[func2_output_gallery],
concurrency_id='default',
show_api=False)
with gr.Tab("text with image search (pic2word)") :
with gr.Row() :
with gr.Column() :
func3_input_text_kor = gr.Text(label="Input (Kor)", info="한국어로 질문을 입력하세요. 캐릭터명) 강효민, 김민정, 김서아, 민아름, 박가을, 이미소, 정해서, 진은설, 차태석, 한유현, 황윤혜",
value="there exists 박가을")
func3_input_count = gr.Slider(label="Max count", info="응답받는 최대 개수를 설정합니다.", minimum=1, maximum=100, step=1, value=5)
func3_input_paths = gr.Textbox(label="Target paths", info="대상으로 하는 이미지 경로", lines=10, value=get_target_paths('sample'))
func3_btn_submit = gr.Button(value="Submit", variant='primary')
with gr.Column() :
func3_output_text_en = gr.Text(label="Input (En)", info="한국어를 영어로 번역", interactive=False)
func3_output_img = gr.Image(label='Character image', interactive=False)
func3_output_list = gr.Json(label="Outpus")
func3_output_gallery = gr.Gallery(label="Output images", columns=5, interactive=False)
func3_btn_submit.click(fn=do_retrieve,
inputs=[func3_input_text_kor, func3_input_paths, func3_input_count],
outputs=[func3_output_text_en, func3_output_img, func3_output_list],
concurrency_id='default').then(fn=parsing_json_for_display,
inputs=[func3_output_list],
outputs=[func3_output_gallery],
concurrency_id='default',
show_api=False)
with gr.Tab("final search") :
with gr.Row() :
with gr.Column() :
final_input_text_kor = gr.Text(label="Input (Kor)", info="한국어로 질문을 입력하세요", value="안경 낀 사람 때리면 살인 대사 몇화인지 알려주세요")
final_btn_submit = gr.Button(value="Submit", variant='primary')
with gr.Column() :
with gr.Row() :
middle_text = gr.Text(label="Middle text", info="중간 과정의 텍스트", scale=2)
final_output_img = gr.Image(label="캐릭터 이미지", scale=1, interactive=False)
final_output_list = gr.Json(label="Outpus")
final_output_gallery = gr.Gallery(label="Output images", columns=5)
final_btn_submit.click(fn=search_by_final,
inputs=[final_input_text_kor],
outputs=[middle_text, final_output_img, final_output_list],
concurrency_id='default',
api_name='search_by_final').then(fn=parsing_json_for_display,
inputs=[final_output_list],
outputs=[final_output_gallery],
concurrency_id='default',
show_api=False)
demo.title = "웹툰검색데모"
demo.queue(default_concurrency_limit=1)
# demo.launch(server_name='0.0.0.0', server_port=7000, share=False)
app = gr.mount_gradio_app(app, demo, path='/demo')
uvicorn.run(app, host=args.host, port=args.port, workers=args.workers)