-
Notifications
You must be signed in to change notification settings - Fork 279
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adds InvertLogarithmPreprocessorTest to invert the binary RMSLE optim…
…ization objective. PiperOrigin-RevId: 660728458
- Loading branch information
1 parent
78b1889
commit 8922093
Showing
3 changed files
with
217 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
114 changes: 114 additions & 0 deletions
114
tensorflow_model_analysis/metrics/preprocessors/invert_logarithm_preprocessors.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
# Copyright 2019 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Includes preprocessors for log2 inversion transformation.""" | ||
|
||
from typing import Iterator, Optional | ||
|
||
import numpy as np | ||
from tensorflow_model_analysis import constants | ||
from tensorflow_model_analysis.api import types | ||
from tensorflow_model_analysis.metrics import metric_types | ||
from tensorflow_model_analysis.metrics import metric_util | ||
from tensorflow_model_analysis.utils import util | ||
|
||
_INVERT_BINARY_LOGARITHM_PREPROCESSOR_BASE_NAME = ( | ||
'invert_binary_logarithm_preprocessor' | ||
) | ||
|
||
|
||
def _invert_log2_values( | ||
log_values: np.ndarray, | ||
) -> np.ndarray: | ||
"""Invert the binary logarithm and return an ndarray.""" | ||
# We invert the following formula: log_2(y_pred + 1.0) | ||
return np.power(2.0, log_values) - 1.0 | ||
|
||
|
||
class InvertBinaryLogarithmPreprocessor(metric_types.Preprocessor): | ||
"""Read label and prediction from binary logarithm to numpy array.""" | ||
|
||
def __init__( | ||
self, | ||
name: Optional[str] = None, | ||
model_name: str = '', | ||
): | ||
"""Initialize the preprocessor for binary logarithm inversion. | ||
Args: | ||
name: (Optional) name for the preprocessor. | ||
model_name: (Optional) model name (if multi-model evaluation). | ||
""" | ||
if not name: | ||
name = metric_util.generate_private_name_from_arguments( | ||
_INVERT_BINARY_LOGARITHM_PREPROCESSOR_BASE_NAME | ||
) | ||
super().__init__(name=name) | ||
self._model_name = model_name | ||
|
||
def _read_label_or_prediction_in_multiple_dicts( | ||
self, | ||
key: str, | ||
extracts: util.StandardExtracts, | ||
) -> np.ndarray: | ||
"""Reads and inverts the binary logarithm from extracts.""" | ||
if key == constants.LABELS_KEY: | ||
value = extracts.get_labels(self._model_name) | ||
else: | ||
value = extracts.get_predictions(self._model_name) | ||
return _invert_log2_values(value) | ||
|
||
def process( | ||
self, extracts: types.Extracts | ||
) -> Iterator[metric_types.StandardMetricInputs]: | ||
"""Reads and inverts the binary logarithm from extracts. | ||
It will search in labels/predictions, features and transformed features. | ||
Args: | ||
extracts: A tfma extract contains the regression data. | ||
Yields: | ||
A standard metric input contains the following key and values: | ||
- {'labels'}: A numpy array represents the regressed values. | ||
- {'predictions'}: A numpy array represents the regression predictions. | ||
- {'example_weights'}: (Optional) A numpy array represents the example | ||
weights. | ||
""" | ||
extracts = util.StandardExtracts(extracts) | ||
|
||
extracts[constants.LABELS_KEY] = ( | ||
self._read_label_or_prediction_in_multiple_dicts( | ||
constants.LABELS_KEY, extracts | ||
) | ||
) | ||
|
||
extracts[constants.PREDICTIONS_KEY] = ( | ||
self._read_label_or_prediction_in_multiple_dicts( | ||
constants.PREDICTIONS_KEY, | ||
extracts, | ||
) | ||
) | ||
|
||
if ( | ||
extracts[constants.LABELS_KEY].shape | ||
!= extracts[constants.PREDICTIONS_KEY].shape | ||
): | ||
raise ValueError( | ||
'The size of ground truth ' | ||
f'{extracts[constants.LABELS_KEY].shape} does not match ' | ||
'with the size of prediction ' | ||
f'{extracts[constants.PREDICTIONS_KEY].shape}' | ||
) | ||
|
||
yield metric_util.to_standard_metric_inputs(extracts) |
102 changes: 102 additions & 0 deletions
102
tensorflow_model_analysis/metrics/preprocessors/invert_logarithm_preprocessors_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# Copyright 2019 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Tests for invert logarithm preprocessors.""" | ||
|
||
from absl.testing import absltest | ||
from absl.testing import parameterized | ||
import apache_beam as beam | ||
from apache_beam.testing import util as beam_testing_util | ||
import numpy as np | ||
from tensorflow_model_analysis import constants | ||
from tensorflow_model_analysis.metrics.preprocessors import invert_logarithm_preprocessors | ||
from tensorflow_model_analysis.utils import util | ||
|
||
|
||
class InvertBinaryLogarithmPreprocessorTest(parameterized.TestCase): | ||
|
||
def setUp(self): | ||
super().setUp() | ||
values = np.array([[1, 2, 4], [1, 2, 4]], dtype=np.int32) | ||
processed_values = np.array([[1, 3, 15], [1, 3, 15]], dtype=np.float32) | ||
|
||
self._extract_inputs = [{ | ||
constants.LABELS_KEY: values, | ||
constants.PREDICTIONS_KEY: values, | ||
}] | ||
self._expected_processed_inputs = [ | ||
util.StandardExtracts({ | ||
constants.LABELS_KEY: processed_values, | ||
constants.PREDICTIONS_KEY: processed_values, | ||
}) | ||
] | ||
|
||
def testInvertBinaryLogarithmPreprocessor(self): | ||
with beam.Pipeline() as pipeline: | ||
updated_pcoll = ( | ||
pipeline | ||
| 'Create' >> beam.Create(self._extract_inputs) | ||
| 'Preprocess' | ||
>> beam.ParDo( | ||
invert_logarithm_preprocessors.InvertBinaryLogarithmPreprocessor() | ||
) | ||
) | ||
|
||
def check_result(result): | ||
# Only single extract case is tested | ||
self.assertLen(result, len(self._expected_processed_inputs)) | ||
for updated_extracts, expected_input in zip( | ||
result, self._expected_processed_inputs | ||
): | ||
self.assertIn(constants.PREDICTIONS_KEY, updated_extracts) | ||
np.testing.assert_allclose( | ||
updated_extracts[constants.PREDICTIONS_KEY], | ||
expected_input[constants.PREDICTIONS_KEY], | ||
) | ||
self.assertIn(constants.LABELS_KEY, updated_extracts) | ||
np.testing.assert_allclose( | ||
updated_extracts[constants.LABELS_KEY], | ||
expected_input[constants.LABELS_KEY], | ||
) | ||
if constants.EXAMPLE_WEIGHTS_KEY in expected_input: | ||
self.assertIn(constants.EXAMPLE_WEIGHTS_KEY, updated_extracts) | ||
np.testing.assert_allclose( | ||
updated_extracts[constants.EXAMPLE_WEIGHTS_KEY], | ||
expected_input[constants.EXAMPLE_WEIGHTS_KEY], | ||
) | ||
|
||
beam_testing_util.assert_that(updated_pcoll, check_result) | ||
|
||
def testName(self): | ||
preprocessor = ( | ||
invert_logarithm_preprocessors.InvertBinaryLogarithmPreprocessor() | ||
) | ||
self.assertEqual( | ||
preprocessor.name, '_invert_binary_logarithm_preprocessor:' | ||
) | ||
|
||
def testLabelPreidictionSizeMismatch(self): | ||
extracts = { | ||
constants.LABELS_KEY: np.array([[1, 2]]), | ||
constants.PREDICTIONS_KEY: np.array([[1, 2, 3]]), | ||
} | ||
with self.assertRaisesRegex(ValueError, 'does not match'): | ||
_ = next( | ||
invert_logarithm_preprocessors.InvertBinaryLogarithmPreprocessor().process( | ||
extracts=extracts | ||
) | ||
) | ||
|
||
|
||
if __name__ == '__main__': | ||
absltest.main() |