Skip to content

Metric Learning and Adaptive Boundary for Out-of-Domain Detection (NLDB 2022)

Notifications You must be signed in to change notification settings

tgargiani/Adaptive-Boundary

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Metric Learning and Adaptive Boundary for Out-of-Domain Detection


About

Source code for research paper Metric Learning and Adaptive Boundary for Out-of-Domain Detection (accepted to NLDB 2022).

Check out our conference poster!

Usage

Run python3 code/run.py {clinc150,banking77} for chosen dataset to replicate results.

Dependencies

Run pip install -r code/requirements.txt to install dependencies.

Datasets

Evaluated on CLINC150 and BANKING77.

Results

Overall results

Accuracy and F1 score calculated for all classes (IND classes and OOD class).

25% known ratio 50% known ratio 75% known ratio
Dataset Method Accuracy F1 Accuracy F1 Accuracy F1
CLINC150 MSP 47.02 47.62 62.96 70.41 74.07 82.38
DOC 74.97 66.37 77.16 78.26 78.73 83.59
OpenMax 68.50 61.99 80.11 80.56 76.80 73.16
DeepUnk 81.43 71.16 83.35 82.16 83.71 86.23
ADB 87.59 77.19 86.54 85.05 86.32 88.53
ODIST 89.79 UNK 88.61 UNK 87.70 UNK
OurLMCL 91.81 85.90 88.81 89.19 88.54 92.21
OurTriplet 90.28 84.82 88.89 89.44 87.81 91.72
BANKING77 MSP 43.67 50.09 59.73 71.18 75.89 83.60
DOC 56.99 58.03 64.81 73.12 76.77 83.34
OpenMax 49.94 54.14 65.31 74.24 77.45 84.07
DeepUnk 64.21 61.36 72.73 77.53 78.52 84.31
ADB 78.85 71.62 78.86 80.90 81.08 85.96
ODIST 81.69 UNK 80.90 UNK 82.79 UNK
OurLMCL 85.71 78.86 83.78 84.93 84.40 88.39
OurTriplet 82.71 70.02 81.83 83.07 81.82 86.94

Class-specific results

F1 score calculated for IND classes and OOD class separately.

25% known ratio 50% known ratio 75% known ratio
Dataset Method F1 (OOD) F1 (IND) F1 (OOD) F1 (IND) F1 (OOD) F1 (IND)
CLINC150 MSP 50.88 47.53 57.62 70.58 59.08 82.59
DOC 81.98 65.96 79.00 78.25 72.87 83.69
OpenMax 75.76 61.62 81.89 80.54 76.35 73.13
DeepUnk 87.33 70.73 85.85 82.11 81.15 86.27
ADB 91.84 76.80 88.65 85.00 83.92 88.58
ODIST 93.42 79.69 90.62 86.52 85.86 89.33
OurLMCL 94.5 85.6 88.9 89.2 78.4 92.3
OurTriplet 93.3 84.6 89.0 89.4 76.6 91.8
BANKING77 MSP 41.43 50.55 41.19 71.97 39.23 84.36
DOC 61.42 57.85 55.14 73.59 50.60 83.91
OpenMax 51.32 54.28 54.33 74.76 50.85 84.64
DeepUnk 70.44 60.88 69.53 77.74 58.54 84.75
ADB 84.56 70.94 78.44 80.96 66.47 86.29
ODIST 87.11 72.72 81.32 81.79 71.95 87.20
OurLMCL 89.9 78.4 83.9 84.9 73.1 88.7
OurTriplet 88.0 69.1 81.9 83.0 66.8 87.2

Citation

If you like our work, please ⭐ this repository.

@InProceedings{10.1007/978-3-031-08473-7_12,
  author="Lorenc, Petr
  and Gargiani, Tommaso
  and Pichl, Jan
  and Konr{\'a}d, Jakub
  and Marek, Petr
  and Kobza, Ond{\v{r}}ej
  and {\v{S}}ediv{\'y}, Jan",
  title="Metric Learning and Adaptive Boundary for Out-of-Domain Detection",
  booktitle="Natural Language Processing and Information Systems",
  year="2022",
  publisher="Springer International Publishing",
  address="Cham",
  pages="127--134",
  isbn="978-3-031-08473-7"
}

Acknowledgments

This research was partially supported by the Grant Agency of the Czech Technical University in Prague, grant (SGS22/082/OHK3/1T/37).

Releases

No releases published

Packages

No packages published

Languages