Skip to content

Latest commit

 

History

History
123 lines (60 loc) · 2.19 KB

README.md

File metadata and controls

123 lines (60 loc) · 2.19 KB

Webshell Detection

Webshell Detection Based on the Word Attention Mechanism

Read this article

Cloned from https://github.com/leett1/Programe/

Editing directory project.zip

Install packages:

  • gensim==3.8.1
  • python-Levenshtein==0.12.0
  • pathlib==1.0.1
  • numpy==1.19.2
  • tensorflow==1.14
  • keras==2.3.1
  • scikit-learn==0.24.1

Initializing a machine learning environment

Deploying a virtual environment Anaconda3

  • Install packages

    yum install -y zlib-devel bzip2 bzip2-devel readline-devel sqlite sqlite-devel openssl-devel xz xz-devel libffi-devel

  • Install Anaconda3

    curl -O https://repo.anaconda.com/archive/Anaconda3-2019.03-Linux-x86_64.sh

    bash Anaconda3-2019.03-Linux-x86_64.sh

  • Edit file .bashrc

    vim ~/.bashrc

    Add this text to the end of the file:

    export PATH="/home//anaconda3/bin:$PATH"

    <user> - replace with user

  • source ~/.bash_profile

  • Install environment

    conda create -n tf1_env

    conda activate tf1_env

Project ML

  • cd /var

  • mkdir cnn_word2wec_sentence

  • chmod 775 cnn_word2wec_sentence

  • chown <user>:<group user> cnn_word2wec_sentence

  • cd /var/cnn_word2wec_sentence

Remote Python interpreter

  • Interpreter: /home/<user>/anaconda3/envs/tf1_env/bin/python

    <user> - replace with user

  • Project migration: /var/cnn_word2wec_sentence

Python libraries

  • Project path

    cd /var/cnn_word2wec_sentence

  • Activate env

    conda activate tf1_env

  • Install TensorFlow

    conda install tensorflow==1.14.0

    conda install keras==2.3.1

  • Install requirements

    pip install -r requirements.txt

  • Check

    python -V

    python -c 'import tensorflow as tf; print(tf.__version__)'

Train & test models

  1. Model training: python3 one_attention_model.py

    Output: one_attention_mode190626_dan.h5

  2. Model training: python3 train_model.py

    Output: two_attention_mode190317.h5

  3. Model training: python3 word2vec_train.py

    Output: word_train190313.model

  4. Edit the file and run the model test: python3 test_1.py