-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathnormalize.rkt
753 lines (694 loc) · 25.6 KB
/
normalize.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
#lang typed/racket
;;; normalize.rkt
;;;
;;; This file implements normalization by evaluation.
(require "basics.rkt")
(require (for-syntax racket/base syntax/parse))
(require/typed "locations.rkt" (location->srcloc (-> Loc Srcloc)))
(provide (all-defined-out))
;;; Call-by-need evaluation
;; Pie is a total language, which means that every program will
;; eventually terminate. Because the steps taken during evaluation are
;; completely deterministic, and because Pie is total, it is
;; acceptable to choose any order of evaluation.
;; On the other hand, many useful Pie programs will take many more
;; evaluation steps to complete when using strict evaluation. For
;; instance, consider zerop from chapter 3 of The Little Typer. zerop
;; returns 'nil when its argument's value has add1 at the top, or 't
;; if it is zero. If (zerop (double 10000)) is evaluated strictly, the
;; evaluator will first need to find out that (double 10000) is 20000,
;; requiring 10000 steps. On the other hand, if it is evaluated
;; lazily, then it will need only one step to discover that the value
;; has add1 at the top.
;; Pie uses call-by-need evaluation. This means that if two different
;; expressions make use of some expression, such as a definition, then
;; evaluation steps will be shared between them and will not need to
;; be repeated.
;; Call-by-need evaluation is achieved by introducing a new value that
;; represents evaluation that has not yet been performed, but should
;; instead be performed on demand. That value, which doesn't represent
;; any value in the Pie sense of the word, is called DELAY and is
;; defined in basics.rkt. When DELAY represents work that has not yet
;; been done, it is filled with a special kind of closure called
;; DELAY-CLOS that pairs an expression with its environment.
;; Not every DELAY represents evaluation that has not yet been
;; performed. Some represent evaluation that was already demanded by
;; some other operator. The work is shared by updating the contents of
;; DELAY with an actual value.
;; later is used to delay evaluation by constructing a DELAY value
;; that contains a DELAY-CLOS closure.
(: later (-> Env Core Value))
(define (later ρ expr)
(DELAY (box (DELAY-CLOS ρ expr))))
;; undelay is used to find the value that is contained in a
;; DELAY-CLOS closure by invoking the evaluator.
(: undelay (-> DELAY-CLOS Value))
(define (undelay c)
(match c
[(DELAY-CLOS ρ expr)
(now (val-of ρ expr))]))
;; now demands the _actual_ value represented by a DELAY. If the value
;; is a DELAY-CLOS, then it is computed using undelay. If it is
;; anything else, then it has already been computed, so it is
;; returned.
;;
;; now should be used any time that a value is inspected to see what
;; form it has, because those situations require that the delayed
;; evaluation steps be carried out.
(: now (-> Value Value))
(define (now v)
(match v
[(DELAY (and b (box v)))
(if (DELAY-CLOS? v)
(let ((the-value (undelay v)))
(set-box! b the-value)
the-value)
v)]
[other other]))
;; !! is a version of now that works in a pattern. This is convenient
;; because it is sometimes necessary to inspect part of a value that
;; is not at the top - for instance, when checking vecnil, it is
;; important that the length in the Vec type's value be precisely
;; zero.
(define-match-expander !!
(lambda (pat-stx)
(syntax-parse pat-stx
[(!! p)
(syntax/loc pat-stx
(app now p))])))
;;; Helper for constructing nested Π types
(define-syntax (Π-type stx)
(syntax-parse stx
[(_ () ret) (syntax/loc stx ret)]
[(_ ((x:id arg-t) b ...) ret)
(syntax/loc stx
(PI 'x arg-t (HO-CLOS (λ (x) (Π-type (b ...) ret)))))]))
;;; The evaluator
;; Functions whose names begin with "do-" are helpers that implement
;; the corresponding eliminator.
(: do-ap (-> Value Value Value))
(define (do-ap rator-v rand-v)
(match (now rator-v)
[(LAM x c)
(val-of-closure c rand-v)]
[(NEU (!! (PI x A c))
ne)
(NEU (val-of-closure c rand-v)
(N-ap ne (THE A rand-v)))]))
(: do-which-Nat (-> Value Value Value Value Value))
(define (do-which-Nat tgt-v b-tv b-v s-v)
(match (now tgt-v)
['ZERO b-v]
[(ADD1 n-1v)
(do-ap s-v n-1v)]
[(NEU (!! 'NAT) ne)
(NEU b-tv
(N-which-Nat ne
(THE b-tv b-v)
(THE (Π-type ((n 'NAT)) b-tv)
s-v)))]))
(: do-iter-Nat (-> Value Value Value Value Value))
(define (do-iter-Nat tgt-v b-tv b-v s-v)
(match (now tgt-v)
['ZERO b-v]
[(ADD1 n-1v)
(do-ap s-v (do-iter-Nat n-1v b-tv b-v s-v))]
[(NEU (!! 'NAT) ne)
(NEU b-tv
(N-iter-Nat ne
(THE b-tv b-v)
(THE (Π-type ((n b-tv)) b-tv)
s-v)))]))
(: do-rec-Nat (-> Value Value Value Value Value))
(define (do-rec-Nat tgt-v b-tv b-v s-v)
(match (now tgt-v)
['ZERO b-v]
[(ADD1 n-1v)
(do-ap
(do-ap s-v n-1v)
(do-rec-Nat n-1v b-tv b-v s-v))]
[(NEU (!! 'NAT) ne)
(NEU b-tv
(N-rec-Nat ne
(THE b-tv b-v)
(THE (Π-type ((n-1 'NAT)
(ih b-tv))
b-tv)
s-v)))]))
(: do-ind-Nat (-> Value Value Value Value Value))
(define (do-ind-Nat tgt-v mot-v b-v s-v)
(match (now tgt-v)
['ZERO b-v]
[(ADD1 n-1v)
(do-ap (do-ap s-v n-1v)
(do-ind-Nat n-1v mot-v b-v s-v))]
[(NEU (!! 'NAT) ne)
(NEU (do-ap mot-v tgt-v)
(N-ind-Nat
ne
(THE (Π-type ((x 'NAT)) 'UNIVERSE)
mot-v)
(THE (do-ap mot-v 'ZERO) b-v)
(THE (Π-type ((n-1 'NAT)
(ih (do-ap mot-v n-1)))
(do-ap mot-v (ADD1 n-1)))
s-v)))]))
(: do-car (-> Value Value))
(define (do-car p-v)
(match (now p-v)
[(CONS a d) a]
[(NEU (!! (SIGMA x A c)) ne)
(NEU A (N-car ne))]))
(: do-cdr (-> Value Value))
(define (do-cdr p-v)
(match (now p-v)
[(CONS a d)
d]
[(NEU (!! (SIGMA x A c)) ne)
(NEU (val-of-closure c (do-car p-v))
(N-cdr ne))]))
(: do-ind-List (-> Value Value Value Value Value))
(define (do-ind-List tgt-v mot-v b-v s-v)
(match (now tgt-v)
['NIL b-v]
[(LIST:: h t)
(do-ap
(do-ap (do-ap s-v h) t)
(do-ind-List t mot-v b-v s-v))]
[(NEU (!! (LIST E)) ne)
(let ([mot-tv (Π-type ((xs (LIST E))) 'UNIVERSE)])
(NEU (do-ap mot-v tgt-v)
(N-ind-List
ne
(THE mot-tv mot-v)
(THE (do-ap mot-v 'NIL) b-v)
(THE (Π-type ((h E)
(t (LIST E))
(ih (do-ap mot-v t)))
(do-ap mot-v (LIST:: h t)))
s-v))))]))
(: do-rec-List (-> Value Value Value Value Value))
(define (do-rec-List tgt-v b-tv b-v s-v)
(match (now tgt-v)
['NIL b-v]
[(LIST:: h t)
(do-ap (do-ap (do-ap s-v h) t)
(do-rec-List t b-tv b-v s-v))]
[(NEU (!! (LIST E)) ne)
(NEU b-tv
(N-rec-List
ne
(THE b-tv b-v)
(THE (Π-type ((h E)
(t (LIST E))
(ih b-tv))
b-tv)
s-v)))]))
(: do-ind-Absurd (-> Value Value Value))
(define (do-ind-Absurd tgt-v mot-v)
(match (now tgt-v)
[(NEU (!! ABSURD) ne)
(NEU mot-v
(N-ind-Absurd ne (THE 'UNIVERSE mot-v)))]))
(: do-replace (-> Value Value Value Value))
(define (do-replace tgt-v mot-v b-v)
(match (now tgt-v)
[(SAME v)
b-v]
[(NEU (!! (EQUAL A-v from-v to-v))
ne)
(NEU (do-ap mot-v to-v)
(N-replace ne
(THE (Π-type ((x A-v)) 'UNIVERSE)
mot-v)
(THE (do-ap mot-v from-v)
b-v)))]))
(: do-trans (-> Value Value Value))
(define (do-trans tgt-1v tgt-2v)
(match* ((now tgt-1v) (now tgt-2v))
[((SAME v) (SAME _))
(SAME v)]
[((SAME from-v) (NEU (!! (EQUAL A-v _ to-v)) ne2))
(NEU (EQUAL A-v from-v to-v)
(N-trans2 (THE (EQUAL A-v from-v from-v) (SAME from-v))
ne2))]
[((NEU (!! (EQUAL A-v from-v _)) ne1) (SAME to-v))
(NEU (EQUAL A-v from-v to-v)
(N-trans1 ne1 (THE (EQUAL A-v to-v to-v) (SAME to-v))))]
[((NEU (!! (EQUAL A-v from-v _)) ne1) (NEU (!! (EQUAL _ _ to-v)) ne2))
(NEU (EQUAL A-v from-v to-v)
(N-trans12 ne1 ne2))]))
(: do-cong (-> Value Value Value Value))
(define (do-cong tgt-v B-v fun-v)
(match (now tgt-v)
[(SAME v)
(SAME (do-ap fun-v v))]
[(NEU (!! (EQUAL A-v from-v to-v)) ne)
(NEU (EQUAL B-v (do-ap fun-v from-v) (do-ap fun-v to-v))
(N-cong ne (THE (Π-type ((x A-v)) B-v) fun-v)))]))
(: do-symm (-> Value Value))
(define (do-symm tgt-v)
(match (now tgt-v)
[(SAME v) (SAME v)]
[(NEU (!! (EQUAL A-v from-v to-v))
ne)
(NEU (EQUAL A-v to-v from-v)
(N-symm ne))]))
(: do-ind-= (-> Value Value Value Value))
(define (do-ind-= tgt-v motive-v base-v)
(match (now tgt-v)
[(SAME v) base-v]
[(NEU (!! (EQUAL A from to)) ne)
(NEU (do-ap (do-ap motive-v to) tgt-v)
(N-ind-= ne
(THE (Π-type ((to A)
(p (EQUAL A from to)))
'UNIVERSE)
motive-v)
(THE (do-ap (do-ap motive-v from)
(SAME from))
base-v)))]))
(: do-head (-> Value Value))
(define (do-head tgt-v)
(match (now tgt-v)
[(VEC:: hv tv) hv]
[(NEU (!! (VEC Ev (!! (ADD1 len-1v))))
ne)
(NEU Ev (N-head ne))]))
(: do-tail (-> Value Value))
(define (do-tail tgt-v)
(match (now tgt-v)
[(VEC:: hv tv) tv]
[(NEU (!! (VEC Ev (!! (ADD1 len-1v)))) ne)
(NEU (VEC Ev len-1v) (N-tail ne))]))
(: ind-Vec-step-type (-> Value Value Value))
(define (ind-Vec-step-type Ev mot-v)
(Π-type ((k 'NAT)
(e Ev)
(es (VEC Ev k))
(ih (do-ap (do-ap mot-v k) es)))
(do-ap (do-ap mot-v (ADD1 k)) (VEC:: e es))))
(: do-ind-Vec (-> Value Value Value Value Value Value))
(define (do-ind-Vec len-v vec-v mot-v b-v s-v)
(match* ((now len-v) (now vec-v))
[('ZERO 'VECNIL) b-v]
[((ADD1 len-1-v) (VEC:: h t))
(do-ap (do-ap (do-ap (do-ap s-v len-1-v) h) (do-tail vec-v))
(do-ind-Vec len-1-v t mot-v b-v s-v))]
[((NEU (!! 'NAT) len) (NEU (!! (VEC Ev _)) ne))
(NEU (do-ap (do-ap mot-v len-v) vec-v)
(N-ind-Vec12 len
ne
(THE (Π-type ((k 'NAT)
(es (VEC Ev k)))
'UNIVERSE)
mot-v)
(THE (do-ap (do-ap mot-v 'ZERO) 'VECNIL) b-v)
(THE (ind-Vec-step-type Ev mot-v)
s-v)))]
[(len-v (NEU (!! (VEC Ev _)) ne))
(NEU (do-ap (do-ap mot-v len-v) vec-v)
(N-ind-Vec2 (THE 'NAT len-v)
ne
(THE (Π-type ((k 'NAT)
(es (VEC Ev k)))
'UNIVERSE)
mot-v)
(THE (do-ap (do-ap mot-v 'ZERO) 'VECNIL)
b-v)
(THE (ind-Vec-step-type Ev mot-v) s-v)))]))
(: do-ind-Either (-> Value Value Value Value Value))
(define (do-ind-Either tgt mot l r)
(match (now tgt)
[(LEFT x)
(do-ap l x)]
[(RIGHT x)
(do-ap r x)]
[(NEU (!! (EITHER Lv Rv)) ne)
(let ([mot-tv (Π-type ((x (EITHER Lv Rv))) 'UNIVERSE)])
(NEU (do-ap mot tgt)
(N-ind-Either ne
(THE mot-tv mot)
(THE (Π-type ((x Lv))
(do-ap mot (LEFT x)))
l)
(THE (Π-type ((x Rv))
(do-ap mot (RIGHT x)))
r))))]))
;; The main evaluator is val-of. Instead of calling itself
;; recursively, it uses later to delay the evaluation of expressions
;; other than the outermost constructor or type constructor.
(: val-of (-> Env Core Value))
(define (val-of ρ e)
(match e
[`(the ,t ,expr) (val-of ρ expr)]
['U 'UNIVERSE]
['Nat 'NAT]
['zero 'ZERO]
[`(add1 ,n) (ADD1 (later ρ n))]
[`(Π ((,x ,A)) ,B)
(let ([A-v (later ρ A)])
(PI x A-v (FO-CLOS ρ x B)))]
[`(λ (,x) ,b)
(LAM x (FO-CLOS ρ x b))]
[`(which-Nat ,tgt (the ,b-t ,b) ,s)
(do-which-Nat (later ρ tgt)
(later ρ b-t)
(later ρ b)
(later ρ s))]
[`(iter-Nat ,tgt (the ,b-t ,b) ,s)
(do-iter-Nat (later ρ tgt)
(later ρ b-t)
(later ρ b)
(later ρ s))]
[`(rec-Nat ,tgt (the ,b-t ,b) ,s)
(do-rec-Nat (later ρ tgt)
(later ρ b-t)
(later ρ b)
(later ρ s))]
[`(ind-Nat ,tgt ,mot ,b ,s)
(do-ind-Nat (later ρ tgt)
(later ρ mot)
(later ρ b)
(later ρ s))]
['Atom 'ATOM]
[`(Σ ((,x ,A)) ,D)
(let ([A-v (later ρ A)])
(SIGMA x A-v (FO-CLOS ρ x D)))]
[`(cons ,a ,d) (CONS (later ρ a) (later ρ d))]
[`(car ,p) (do-car (later ρ p))]
[`(cdr ,p) (do-cdr (later ρ p))]
[`(quote ,a) #:when (symbol? a) (QUOTE a)]
['Trivial 'TRIVIAL]
['sole 'SOLE]
['nil 'NIL]
[`(:: ,h ,t) (LIST:: (later ρ h) (later ρ t))]
[`(List ,E) (LIST (later ρ E))]
[`(ind-List ,tgt ,mot ,b ,s)
(do-ind-List (later ρ tgt)
(later ρ mot)
(later ρ b)
(later ρ s))]
[`(rec-List ,tgt (the ,b-t ,b) ,s)
(do-rec-List (later ρ tgt)
(later ρ b-t)
(later ρ b)
(later ρ s))]
[`Absurd 'ABSURD]
[`(ind-Absurd ,tgt ,mot)
(do-ind-Absurd (later ρ tgt) (later ρ mot))]
[`(= ,A ,from ,to)
(EQUAL (later ρ A) (later ρ from) (later ρ to))]
[`(same ,e)
(SAME (later ρ e))]
[`(replace ,tgt ,mot ,b)
(do-replace (later ρ tgt) (later ρ mot) (later ρ b))]
[`(trans ,p1 ,p2)
(do-trans (later ρ p1) (later ρ p2))]
[`(cong ,p1 ,p2 ,p3)
(do-cong (later ρ p1) (later ρ p2) (later ρ p3))]
[`(symm ,p)
(do-symm (later ρ p))]
[`(ind-= ,tgt ,mot ,b)
(do-ind-= (later ρ tgt) (later ρ mot) (later ρ b))]
[`(Vec ,E ,len)
(VEC (later ρ E) (later ρ len))]
['vecnil 'VECNIL]
[`(vec:: ,h ,t) (VEC:: (later ρ h) (later ρ t))]
[`(head ,es) (do-head (later ρ es))]
[`(tail ,es) (do-tail (later ρ es))]
[`(ind-Vec ,len ,es ,mot ,b ,s)
(do-ind-Vec (later ρ len)
(later ρ es)
(later ρ mot)
(later ρ b)
(later ρ s))]
[`(Either ,L ,R) (EITHER (later ρ L) (later ρ R))]
[`(left ,l) (LEFT (later ρ l))]
[`(right ,r) (RIGHT (later ρ r))]
[`(ind-Either ,tgt ,mot ,l ,r)
(do-ind-Either (later ρ tgt)
(later ρ mot)
(later ρ l)
(later ρ r))]
[`(,rator ,rand)
(do-ap (later ρ rator) (later ρ rand))]
[`(TODO ,where ,type)
(NEU (later ρ type) (N-TODO where (later ρ type)))]
[x
(if (and (symbol? x) (var-name? x))
(var-val ρ x)
(error (format "No evaluator for ~a" x)))]))
;;; Context serialization and deserialization
;; In order to support both type checking and a REPL, Pie needs to be
;; able to serialize contexts (which contain Pie values) into pure
;; S-expressions (which are simple data that can be saved to disk or
;; to a network).
;;
;; One disadvantage of the current approach is that laziness is
;; lost. In other words, every value in the context is strictly
;; evaluated as part of serializing it, which might make that process
;; slow if there are values that take a long time to compute.
(: read-back-ctx (-> Ctx Serializable-Ctx))
(define (read-back-ctx Γ)
(match Γ
['()
'()]
[(cons (cons x (free t)) Γ-next)
(cons (list x (list 'free (read-back-type Γ-next t)))
(read-back-ctx Γ-next))]
[(cons (cons x (def t v)) Γ-next)
(cons (list x (list 'def (read-back-type Γ-next t) (read-back Γ-next t v)))
(read-back-ctx Γ-next))]
[(cons (cons x (claim t)) Γ-next)
(cons (list x (list 'claim (read-back-type Γ-next t)))
(read-back-ctx Γ-next))]))
(: val-of-ctx (-> Serializable-Ctx Ctx))
(define (val-of-ctx ctx-list)
(match ctx-list
['() '()]
[(cons (list x b) ctx-tail)
(let ([Γ (val-of-ctx ctx-tail)])
(cons (cons x
(match b
[(list 'free t) (free (val-in-ctx Γ t))]
[(list 'def t e) (def (val-in-ctx Γ t) (val-in-ctx Γ e))]
[(list 'claim t) (claim (val-in-ctx Γ t))]))
Γ))]))
;;; Normalization
;; Convert the value of a type back into the Core Pie syntax that
;; represents it. These read-back types are checked for sameness using
;; α-equiv?.
(: read-back-type (-> Ctx Value Core))
(define (read-back-type Γ tv)
(match (now tv)
['UNIVERSE 'U]
['NAT 'Nat]
[(PI x A c)
(let ((A-e (read-back-type Γ A))
(x^ (fresh Γ x)))
`(Π ((,x^ ,A-e))
,(let ((Γ/x^ (bind-free Γ x^ A)))
(read-back-type Γ/x^ (val-of-closure c (NEU A (N-var x^)))))))]
['ATOM 'Atom]
[(SIGMA x A c)
(let ((A-e (read-back-type Γ A))
(x^ (fresh Γ x)))
`(Σ ((,x^ ,A-e))
,(let ((Γ/x^ (bind-free Γ x^ A)))
(read-back-type Γ/x^ (val-of-closure c (NEU A (N-var x^)))))))]
['TRIVIAL 'Trivial]
[(LIST E) `(List ,(read-back-type Γ E))]
['ABSURD 'Absurd]
[(EQUAL Av fromv tov)
`(= ,(read-back-type Γ Av)
,(read-back Γ Av fromv)
,(read-back Γ Av tov))]
[(VEC Ev lenv)
`(Vec ,(read-back-type Γ Ev) ,(read-back Γ 'NAT lenv))]
[(EITHER Lv Rv)
`(Either ,(read-back-type Γ Lv) ,(read-back-type Γ Rv))]
[(NEU UNIVERSE ne)
(read-back-neutral Γ ne)]))
;; Read back the Core Pie expression that represents a value. This
;; process is determined by the type, which is what allows η-expansion
;; to occur.
(: read-back (-> Ctx Value Value Core))
(define (read-back Γ tv v)
(match* ((now tv) (now v))
[('UNIVERSE v) (read-back-type Γ v)]
[('NAT 'ZERO) 'zero]
[('NAT (ADD1 n-1))
`(add1 ,(read-back Γ 'NAT n-1))]
[((PI x A c) f)
(let ((y (match f
[(LAM y _) y]
[_ x])))
(let ((x^ (fresh Γ y)))
`(λ (,x^)
,(read-back
(bind-free Γ x^ A)
(val-of-closure c (NEU A (N-var x^)))
(do-ap f (NEU A (N-var x^)))))))]
[((SIGMA x A c) p-v)
(let ((the-car (do-car p-v)))
`(cons ,(read-back Γ A the-car)
,(read-back Γ
(val-of-closure c the-car)
(do-cdr p-v))))]
[('ATOM (QUOTE a))
`(quote ,a)]
[('TRIVIAL _) 'sole] ;; η-expansion
[((LIST E) 'NIL) 'nil]
[((LIST E) (LIST:: h t))
`(:: ,(read-back Γ E h) ,(read-back Γ (LIST E) t))]
[('ABSURD (NEU _ ne))
;; This type annotation is half of the η law. See the
;; implementation of α-equiv? for the other half.
`(the Absurd ,(read-back-neutral Γ ne))]
[((EQUAL Av _ _) (SAME v))
`(same ,(read-back Γ Av v))]
[((VEC Ev (!! 'ZERO)) _) 'vecnil]
[((VEC Ev (!! (ADD1 len-1v))) (VEC:: h t))
`(vec:: ,(read-back Γ Ev h)
,(read-back Γ (VEC Ev len-1v) t))]
[((EITHER Lv Rv) (LEFT lv))
`(left ,(read-back Γ Lv lv))]
[((EITHER Lv Rv) (RIGHT rv))
`(right ,(read-back Γ Rv rv))]
[(_ (NEU _ ne))
(read-back-neutral Γ ne)]))
;; Read back a neutral expression. This process is not determined by
;; the type, because type-driven reading back has already occurred by
;; the time that read-back calls read-back-neutral.
(: read-back-neutral (-> Ctx Neutral Core))
(define (read-back-neutral Γ ne)
(match ne
[(N-which-Nat tgt (THE b-tv b-v) (THE s-tv s-v))
`(which-Nat ,(read-back-neutral Γ tgt)
(the ,(read-back-type Γ b-tv)
,(read-back Γ b-tv b-v))
,(read-back Γ s-tv s-v))]
[(N-iter-Nat tgt (THE b-tv b-v) (THE s-tv s-v))
`(iter-Nat ,(read-back-neutral Γ tgt)
(the ,(read-back-type Γ b-tv)
,(read-back Γ b-tv b-v))
,(read-back Γ s-tv s-v))]
[(N-rec-Nat tgt (THE b-tv b-v) (THE s-tv s-v))
`(rec-Nat ,(read-back-neutral Γ tgt)
(the ,(read-back-type Γ b-tv)
,(read-back Γ b-tv b-v))
,(read-back Γ s-tv s-v))]
[(N-ind-Nat tgt
(THE mot-tv mot-v)
(THE b-tv b-v)
(THE s-tv s-v))
`(ind-Nat ,(read-back-neutral Γ tgt)
,(read-back Γ mot-tv mot-v)
,(read-back Γ b-tv b-v)
,(read-back Γ s-tv s-v))]
[(N-car tgt)
(ann `(car ,(read-back-neutral Γ tgt)) Core)]
[(N-cdr tgt)
(ann `(cdr ,(read-back-neutral Γ tgt)) Core)]
[(N-ind-List tgt (THE mot-t mot) (THE b-t b) (THE s-t s))
`(ind-List ,(read-back-neutral Γ tgt)
,(read-back Γ mot-t mot)
,(read-back Γ b-t b)
,(read-back Γ s-t s))]
[(N-rec-List tgt (THE b-t b) (THE s-t s))
`(rec-List ,(read-back-neutral Γ tgt)
(the ,(read-back-type Γ b-t)
,(read-back Γ b-t b))
,(read-back Γ s-t s))]
[(N-ind-Absurd tgt (THE tv ttv))
;; Here's some Absurd η. The rest is in α-equiv?.
`(ind-Absurd (the Absurd ,(read-back-neutral Γ tgt))
,(read-back Γ tv ttv))]
[(N-replace tgt (THE mot-tv mot-v) (THE b-tv b-v))
`(replace ,(read-back-neutral Γ tgt)
,(read-back Γ mot-tv mot-v)
,(read-back Γ b-tv b-v))]
[(N-trans12 p1 p2)
`(trans ,(read-back-neutral Γ p1) ,(read-back-neutral Γ p2))]
[(N-trans1 ne (THE t v))
`(trans ,(read-back-neutral Γ ne) ,(read-back Γ t v))]
[(N-trans2 (THE t v) ne)
`(trans ,(read-back Γ t v) ,(read-back-neutral Γ ne))]
[(N-cong ne (THE (PI y Av c) v))
`(cong ,(read-back-neutral Γ ne)
,(read-back-type Γ (val-of-closure c 'ABSURD))
,(read-back Γ (PI y Av c) v))]
[(N-symm ne)
`(symm ,(read-back-neutral Γ ne))]
[(N-ind-= ne (THE mot-t mot) (THE b-t b))
`(ind-= ,(read-back-neutral Γ ne)
,(read-back Γ mot-t mot)
,(read-back Γ b-t b))]
[(N-head ne)
`(head ,(read-back-neutral Γ ne))]
[(N-tail ne)
`(tail ,(read-back-neutral Γ ne))]
[(N-ind-Vec1 len (THE es-t es-v) (THE mot-t mot) (THE b-t b) (THE s-t s))
`(ind-Vec ,(read-back-neutral Γ len)
,(read-back Γ es-t es-v)
,(read-back Γ mot-t mot)
,(read-back Γ b-t b)
,(read-back Γ s-t s))]
[(N-ind-Vec2 (THE len-t len-v) es (THE mot-t mot) (THE b-t b) (THE s-t s))
`(ind-Vec ,(read-back Γ len-t len-v)
,(read-back-neutral Γ es)
,(read-back Γ mot-t mot)
,(read-back Γ b-t b)
,(read-back Γ s-t s))]
[(N-ind-Vec12 len es (THE mot-t mot) (THE b-t b) (THE s-t s))
`(ind-Vec ,(read-back-neutral Γ len)
,(read-back-neutral Γ es)
,(read-back Γ mot-t mot)
,(read-back Γ b-t b)
,(read-back Γ s-t s))]
[(N-ind-Either tgt (THE mot-tv mot-v) (THE l-tv l-v) (THE r-tv r-v))
`(ind-Either ,(read-back-neutral Γ tgt)
,(read-back Γ mot-tv mot-v)
,(read-back Γ l-tv l-v)
,(read-back Γ r-tv r-v))]
[(N-ap tgt (THE arg-tv arg-v))
`(,(read-back-neutral Γ tgt)
,(read-back Γ arg-tv arg-v))]
[(N-var x) x]
[(N-TODO where tyv) `(TODO ,where ,(read-back-type Γ tyv))]))
;;; General-purpose helpers
;; Given a value for a closure's free variable, find the value. This
;; cannot be used for DELAY-CLOS, because DELAY-CLOS's laziness
;; closures do not have free variables, but are instead just delayed
;; computations.
(: val-of-closure (-> Closure Value Value))
(define (val-of-closure c v)
(match c
[(FO-CLOS ρ x e)
(val-of (extend-env ρ x v) e)]
[(HO-CLOS fun) (fun v)]))
;; Find the value of an expression in the environment that
;; corresponds to a context.
(: val-in-ctx (-> Ctx Core Value))
(define (val-in-ctx Γ e)
(val-of (ctx->env Γ) e))
;; Local Variables:
;; eval: (put 'pmatch 'racket-indent-function 1)
;; eval: (put 'vmatch 'racket-indent-function 1)
;; eval: (put 'pmatch-who 'racket-indent-function 2)
;; eval: (put 'primitive 'racket-indent-function 1)
;; eval: (put 'derived 'racket-indent-function 0)
;; eval: (put 'data-constructor 'racket-indent-function 1)
;; eval: (put 'type-constructor 'racket-indent-function 1)
;; eval: (put 'tests-for 'racket-indent-function 1)
;; eval: (put 'hole 'racket-indent-function 1)
;; eval: (put 'Π 'racket-indent-function 1)
;; eval: (put 'Π* 'racket-indent-function 2)
;; eval: (put 'PI* 'racket-indent-function 1)
;; eval: (put 'Σ 'racket-indent-function 1)
;; eval: (put (intern "?") 'racket-indent-function 1)
;; eval: (put 'trace-type-checker 'racket-indent-function 1)
;; eval: (put 'go-on 'racket-indent-function 1)
;; eval: (setq whitespace-line-column 70)
;; End: