-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataCollection.py
57 lines (43 loc) · 1.41 KB
/
DataCollection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
from cvzone.HandTrackingModule import HandDetector
import numpy as np
import math
import time
cap = cv2.VideoCapture(0)
detector = HandDetector(maxHands=1)
offset = 20
imgSize = 300
folder = "Image/A"
counter=0
while True:
success, img = cap.read()
hands, img = detector.findHands(img)
if hands:
hand = hands[0]
x, y, w, h = hand['bbox']
imgWhite = np.ones((imgSize, imgSize,3), np.uint8)*255
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
imgCropShape = imgCrop.shape
aspectRatio= h/w
if aspectRatio > 1:
k = imgSize/h
wCal = math.ceil(k*w)
imgResize = cv2.resize(imgCrop,(wCal,imgSize))
imgResizeShape = imgResize.shape
wGap = math.ceil((imgSize-wCal)/2)
imgWhite[:, wGap:wGap+wCal] = imgResize
else:
k = imgSize / w
hCal = math.ceil(k * h)
imgResize = cv2.resize(imgCrop, (imgSize, hCal))
imgResizeShape = imgResize.shape
hGap = math.ceil((imgSize - hCal) / 2)
imgWhite[hGap: hGap + hCal,:] = imgResize
cv2.imshow("ImageCrop", imgCrop)
cv2.imshow("ImageWhite", imgWhite)
cv2.imshow("Image", img)
key = cv2.waitKey(1)
if key == ord("s"):
counter+=1
cv2.imwrite(f'{folder}/Image_{time.time()}.jpg',imgWhite)
print(counter)