-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatchFind.R
129 lines (105 loc) · 6.05 KB
/
matchFind.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
library(stringi)
library(pbapply)
library(data.table)
library(dplyr)
matchFind<-function (df1, df2, org1, org2, msa, ort = TRUE){
warnOpt <- getOption("warn")
options(warn = -1)
# Find index of msa having protein ids which both have variants
cat("\n Finding orthologous variants.. \n")
df1_id<-msa$index[msa[[paste0(org1,"_ID")]] %in% unique(df1$Refseq_ID)]
df2_id<-msa$index[msa[[paste0(org2,"_ID")]] %in% unique(df2$Refseq_ID)]
common_id<-as.numeric(intersect(df1_id, df2_id))
df1_df2_ort_list<-vector(mode = "list", length = length(common_id))
j<-0
#if(max(common_id) > min(common_id)){
pb <- pbapply::timerProgressBar(max = length(common_id), style = 2)
#}
# Loop over only common alignments
for (i in common_id){
# aa positions of variants from selected protein
df1_aapos<-df1$aapos[df1$Refseq_ID == msa[[paste0(org1,"_ID")]][msa$index == i]]
df2_aapos<-df2$aapos[df2$Refseq_ID == msa[[paste0(org2,"_ID")]][msa$index == i]]
# reference aa of variants
df1_from<-df1$from[df1$Refseq_ID == msa[[paste0(org1,"_ID")]][msa$index == i]]
df2_from<-df2$from[df2$Refseq_ID == msa[[paste0(org2,"_ID")]][msa$index == i]]
# converted aa
df1_to<-df1$to[df1$Refseq_ID == msa[[paste0(org1,"_ID")]][msa$index == i]]
df2_to<-df2$to[df2$Refseq_ID == msa[[paste0(org2,"_ID")]][msa$index == i]]
# tables for calculating aa conservation
df1_conservation<-data.table::data.table(from = df1_from, to = df1_to, aapos = df1_aapos)
df1_conservation<-dplyr::left_join(df1_conservation, aa_conservation, by = "from")
df1_conservation<-dplyr::mutate(df1_conservation, conservation = ifelse(stringi::stri_detect(df1_conservation$to.y, fixed = stringr::fixed(df1_conservation$to.x)), 1, 0))
df2_conservation<-data.table::data.table(from = df2_from, to = df2_to, aapos = df2_aapos)
df2_conservation<-dplyr::left_join(df2_conservation, aa_conservation, by = "from")
df2_conservation<-dplyr::mutate(df2_conservation, conservation = ifelse(stringi::stri_detect(df2_conservation$to.y, fixed = stringr::fixed(df2_conservation$to.x)), 1, 0))
# get sequence of selected proteins
df1_seq<-msa[[paste0(org1,"_seq")]][msa$index == i]
df2_seq<-msa[[paste0(org2,"_seq")]][msa$index == i]
# get real (trimmed) sequence of selected proteins
df1_real_seq<-stringi::stri_replace_all_regex(df1_seq, "-", "")
df2_real_seq<-stringi::stri_replace_all_regex(df2_seq, "-", "")
# find index of aa and combine these
df1_seq_ind<-data.table::as.data.table(stringi::stri_locate_all_regex(df1_seq, "[A-Z]")[[1]])[[1]]
df2_seq_ind<-data.table::as.data.table(stringi::stri_locate_all_regex(df2_seq, "[A-Z]")[[1]])[[1]]
df1_real_seq_ind<-data.table::as.data.table(stringi::stri_locate_all_regex(df1_real_seq, "[A-Z]")[[1]])[[1]]
df2_real_seq_ind<-data.table::as.data.table(stringi::stri_locate_all_regex(df2_real_seq, "[A-Z]")[[1]])[[1]]
df1_all_seq_ind<-data.table::data.table(seq_ind = df1_seq_ind, aapos = df1_real_seq_ind) %>%
dplyr::filter(df1_real_seq_ind %in% df1_aapos)
df2_all_seq_ind<-data.table::data.table(seq_ind = df2_seq_ind, aapos = df2_real_seq_ind) %>%
dplyr::filter(df2_real_seq_ind %in% df2_aapos)
df1_all_seq_ind<-df1_all_seq_ind[df1_all_seq_ind$seq_ind %in% df2_all_seq_ind$seq_ind,]
df2_all_seq_ind<-df2_all_seq_ind[df2_all_seq_ind$seq_ind %in% df1_all_seq_ind$seq_ind,]
# merge by aa positions, get only aa having same reference aa
if (length(df1_all_seq_ind[[1]]) != 0){
df1_all_seq_ind<-dplyr::left_join(df1_all_seq_ind, df1_conservation, by = "aapos") %>%
unique() %>%
dplyr::select(!to.y)
df2_all_seq_ind<-dplyr::left_join(df2_all_seq_ind, df2_conservation, by = "aapos") %>%
unique() %>%
dplyr::select(!to.y)
all_seq_ind<-dplyr::left_join(df1_all_seq_ind, df2_all_seq_ind, by = "seq_ind") %>%
dplyr::filter(from.x == from.y)
# all_seq_ind$conservation_score<-NA
# if(length(all_seq_ind$seq_ind)>0){
# cons_str_1<-substring(df1_seq, as.numeric(all_seq_ind$seq_ind)-5, as.numeric(all_seq_ind$seq_ind)+5)
# cons_str_2<-substring(df2_seq, as.numeric(all_seq_ind$seq_ind)-5, as.numeric(all_seq_ind$seq_ind)+5)
# for(k in 1:length(all_seq_ind$seq_ind)){
# cons_list<-stringi::stri_match(str_split(cons_str_1[k], "", simplify = TRUE), regex = str_split(cons_str_2[k], "", simplify = TRUE))
# all_seq_ind$conservation_score[k]<-length(na.omit(cons_list))/length(cons_list)
# }
# }
# should dismiss conserved aa changes
# if(ort == TRUE){
# all_seq_ind<-dplyr::filter(all_seq_ind, conservation.x == conservation.y)
# }
# combine both organisms
j<-j+1
df1_df2_ort<-setNames(data.table::data.table(msa[[paste0(org1,"_ID")]][msa$index == i],
all_seq_ind$aapos.x,
all_seq_ind$from.x,
all_seq_ind$to.x.x,
msa[[paste0(org2,"_ID")]][msa$index == i],
all_seq_ind$aapos.y,
all_seq_ind$from.y,
all_seq_ind$to.x.y,
i
),
c(paste0(org1,"_ID"), paste0(org1,"_aapos"), paste0(org1,"_from"), paste0(org1,"_to"),
paste0(org2,"_ID"), paste0(org2,"_aapos"), paste0(org2,"_from"), paste0(org2,"_to"), "msa_id"
))
df1_df2_ort<-df1_df2_ort[df1_df2_ort[[paste0(org1,"_aapos")]] != "",]
df1_df2_ort_list[[j]]<-df1_df2_ort
}
#if(max(common_id) > min(common_id)){
n<-which(common_id == i)
pbapply::setTimerProgressBar(pb, n)
#}
}
df1_df2_ort<-data.table::rbindlist(df1_df2_ort_list)
df1_df2_ort<-unique(df1_df2_ort)
on.exit(options(warn = warnOpt))
return(df1_df2_ort)
}
# all_seq_ind$conservation_score
# conservation_score