-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathget_aligned_features_avgbpe.py
226 lines (176 loc) · 8.75 KB
/
get_aligned_features_avgbpe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#!/usr/bin/env python
"""Script to convert context embedding with alignment to mapped embeddings
"""
import os
import sys
import argparse
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset
from tqdm import tqdm
from transformers import BertModel, BertTokenizer
from utils import read_align, read_parallel
#from pytorch_pretrained_bert.modeling import BertModel
#from pytorch_pretrained_bert.tokenization import BertTokenizer
def convert_sent_to_input(sents, tokenizer, max_seq_length):
input_ids = []
mask = []
for sent in sents:
ids = tokenizer.convert_tokens_to_ids(sent)
mask.append([1] * (len(ids) + 2) + [0] * (max_seq_length - len(ids)))
input_ids.append([101] + ids + [102] + [0] * (max_seq_length - len(ids)))
return torch.tensor(input_ids, dtype=torch.long), torch.tensor(mask, dtype=torch.long)
def convert_words_to_bpe(para, tokenizer):
bpe_para, bpe_table = [], []
for s in para:
src_sent, tgt_sent = s[0], s[1]
src_bpe_table, tgt_bpe_table = [], []
src_sent_bpe, tgt_sent_bpe = [], []
for word in src_sent:
token = tokenizer.tokenize(word)
word2bpe_map = []
for i in range(len(token)):
word2bpe_map.append(len(src_sent_bpe)+i)
src_sent_bpe.extend(token)
src_bpe_table.append(word2bpe_map)
for word in tgt_sent:
token = tokenizer.tokenize(word)
word2bpe_map = []
for i in range(len(token)):
word2bpe_map.append(len(tgt_sent_bpe)+i)
tgt_sent_bpe.extend(token)
tgt_bpe_table.append(word2bpe_map)
bpe_para.append([src_sent_bpe, tgt_sent_bpe])
bpe_table.append([src_bpe_table, tgt_bpe_table])
return bpe_para, bpe_table
def main(arguments):
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--para_file', type=str, required=True,
help="Input parallel file")
parser.add_argument('--align_file', type=str, required=True,
help="Input alignment file")
parser.add_argument('--reverse', type=int, default=0,
help="Wheter para and align is reversed")
parser.add_argument('--align_mode', choices=['word_align', 'sent_avg'],
default='word_align', help=" \
word_align uses the alignment from align_file \
sent_avg uses the averaged embeddign for each sentence")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--cache_dir", default="./", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument('--layer', type=int, default=11,
help="layer of bert outputs to be used")
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--max_seq_length', type=int, default=175)
parser.add_argument('--output_file', help="Output file path", \
default='output')
args = parser.parse_args(arguments)
print(args)
# read parallel
para = read_parallel(args.para_file, reverse=args.reverse)
# read alignment
align_cnt, align_pairs = read_align(args.align_file, reverse=args.reverse)
print("Read {} aligns".format(align_cnt))
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
bpe_para, bpe_table = convert_words_to_bpe(para, tokenizer)
# filter long/empty sentences
fltr_para = []
fltr_align_pairs = []
fltr_bpe_table = []
align_cnt = 0
for cnt, [src, trg] in enumerate(bpe_para):
if len(src) > args.max_seq_length or len(trg) > args.max_seq_length \
or len(src) == 0 or len(trg) == 0:
continue
fltr_para.append([src, trg])
fltr_align_pairs.append(align_pairs[cnt])
fltr_bpe_table.append(bpe_table[cnt])
align_cnt += len(align_pairs[cnt])
para = fltr_para
align_pairs = fltr_align_pairs
print("After filtering {} parallel sentences remains".format(len(para)))
# print the n-th sentence and alignment
n = 10
print("{} ||| {}".format(" ".join(para[n][0]), " ".join(para[n][1])))
for a in align_pairs[n]:
print(' '.join([para[n][0][i] for i in fltr_bpe_table[n][0][a[0]]]) + ' : ' + ' '.join([para[n][1][i] for i in fltr_bpe_table[n][1][a[1]]]))
# bert
device = torch.device('cuda')
model = BertModel.from_pretrained(args.bert_model, cache_dir=args.cache_dir, output_hidden_states=True)
#model = BertModel.from_pretrained(args.bert_model, cache_dir=args.cache_dir)
model.to(device)
src_sents = [s[0] for s in para]
tgt_sents = [s[1] for s in para]
src_input, src_mask = convert_sent_to_input(src_sents, tokenizer, args.max_seq_length)
tgt_input, tgt_mask = convert_sent_to_input(tgt_sents, tokenizer, args.max_seq_length)
src_data = TensorDataset(src_input, src_mask)
src_sampler = SequentialSampler(src_data)
src_dataloader = DataLoader(src_data, sampler=src_sampler, batch_size=args.batch_size)
tgt_data = TensorDataset(tgt_input, tgt_mask)
tgt_sampler = SequentialSampler(tgt_data)
tgt_dataloader = DataLoader(tgt_data, sampler=tgt_sampler, batch_size=args.batch_size)
model.eval()
src_embed = []
tgt_embed = []
for step, batch in enumerate(tqdm(src_dataloader, desc="Iteration")):
input_ids, input_mask = batch
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
with torch.no_grad():
#all_encoder_layers, _ = model(input_ids, attention_mask=input_mask)
all_encoder_layers = model(input_ids, attention_mask=input_mask)[2]
src_embed.append(all_encoder_layers[args.layer][:,1:].detach().to('cpu').numpy())
for step, batch in enumerate(tqdm(tgt_dataloader, desc="Iteration")):
input_ids, input_mask = batch
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
with torch.no_grad():
#all_encoder_layers, _ = model(input_ids, attention_mask=input_mask
all_encoder_layers = model(input_ids, attention_mask=input_mask)[2]
tgt_embed.append(all_encoder_layers[args.layer][:,1:].detach().to('cpu').numpy())
src_embed = np.concatenate(src_embed)
tgt_embed = np.concatenate(tgt_embed)
print(src_embed.shape)
print(tgt_embed.shape)
feature_size = src_embed.shape[2]
# save the alignments
if args.align_mode == 'word_align':
final_res = [np.zeros((align_cnt, feature_size)),
np.zeros((align_cnt, feature_size))]
cnt = 0
elif args.align_mode == 'sent_avg':
sent_cnt = len(src_embed)
final_res = [np.zeros((sent_cnt, feature_size)),
np.zeros((sent_cnt, feature_size))]
for i, pairs in enumerate(align_pairs):
try:
if args.align_mode == 'word_align':
for a in pairs:
if len(fltr_bpe_table[i][0][a[0]]) > 0 and len(fltr_bpe_table[i][1][a[1]]) > 0:
src_word_avg_embed = np.zeros((1, feature_size))
for j in fltr_bpe_table[i][0][a[0]]:
src_word_avg_embed += src_embed[i][j,:]
final_res[0][cnt,:] = src_word_avg_embed / len(fltr_bpe_table[i][0][a[0]])
tgt_word_avg_embed = np.zeros((1, feature_size))
for j in fltr_bpe_table[i][1][a[1]]:
tgt_word_avg_embed += tgt_embed[i][j,:]
final_res[1][cnt,:] = tgt_word_avg_embed / len(fltr_bpe_table[i][1][a[1]])
cnt += 1
elif args.align_mode == 'sent_avg':
final_res[0][i,:] = np.mean(src_embed[i], axis=0)
final_res[1][i,:] = np.mean(tgt_embed[i], axis=0)
except IndexError:
continue
# save the final results
suffix = ['.src', '.trg']
for j in [0, 1]:
np.savetxt(args.output_file+suffix[j], final_res[j], delimiter=' ', fmt='%0.6f')
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))