-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmetricZhao.m
153 lines (108 loc) · 3.16 KB
/
metricZhao.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
function res=pc_assessFusion(im1,im2,fused)
% function res=pc_assessFusion(im1,im2,fused)
%
% This function is to do the assessment for the fused image.
%
% im1 ---- the input image one
% im2 ---- the input image two
% fused ---- the fused image
% res ==== the assessment result
%
% Z. Liu @NRCC
% Ref: Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement, International Journal of Innovative Computing, Information and Control, 3 (6A) 2007, pp.1433-1447
% by J. Zhao et al.
%
% some global parameters
fea_threshold=0.1; % threshold value for the feature
% 1) first, calculate the PC
im1=double(im1);
im2=double(im2);
[pc1,or1,M1,m1]=myphasecong3(im1);
clear or1;
[pc2,or2,M2,m2]=myphasecong3(im2);
clear or2;
[pcf,orf,Mf,mf]=myphasecong3(fused);
clear orf;
% 2)
[hang,lie]=size(fused);
mask=(pc1>pc2);
pc_max=mask.*pc1+(~mask).*pc2;
M_max=mask.*M1+(~mask).*M2;
m_max=mask.*m1+(~mask).*m2;
mask1=(pc1>fea_threshold);
mask2=(pc2>fea_threshold);
mask3=(pc_max>fea_threshold);
% the PC component
resultPC=correlation_coeffcient(pc1,pc2,pc_max,pcf,mask1,mask2,mask3);
clear pc1;
clear pc2;
clear pc_max;
clear pcf;
resultM=correlation_coeffcient(M1,M2,M_max,Mf,mask1,mask2,mask3);
clear M1;
clear M2;
clear M_max;
clear Mf;
resultm=correlation_coeffcient(m1,m2,m_max,mf,mask1,mask2,mask3);
clear m1;
clear m2;
clear m_max;
clear mf;
[resultPC resultM resultm]';
res=resultPC*resultM*resultm;
%=================================================
%
% This sub-function is to calculate the correlation coefficients
%
%=================================================
function res=correlation_coeffcient(im1,im2,im_max,imf, mask1,mask2,mask3)
% im1, im2, im_max, imf --- the input feature maps
% mask1~3 --- the corresponding PC map mask for original image 1, 2, max.
%
%
%
% some local constant parameters
window=fspecial('gaussian',11,1.5);
window=window./(sum(window(:)));
C1=0.0001;
C2=0.0001;
C3=0.0001;
%
im1=mask1.*im1;
im2=mask2.*im2;
im_max=mask3.*im_max;
mu1=filter2(window,im1,'same');
mu2=filter2(window,im2,'same');
muf=filter2(window,imf,'same');
mu_max=filter2(window,im_max,'same');
mu1_sq=mu1.*mu1;
mu2_sq=mu2.*mu2;
muf_sq=muf.*muf;
mu_max_sq=mu_max.*mu_max;
mu1_muf=mu1.*muf;
mu2_muf=mu2.*muf;
mu_max_muf=mu_max.*muf;
sigma1_sq=filter2(window,im1.*im1,'same')-mu1_sq;
sigma2_sq=filter2(window,im2.*im2,'same')-mu2_sq;
sigmaMax_sq=filter2(window,im_max.*im_max,'same')-mu_max_sq;
sigmaf_sq=filter2(window,imf.*imf,'same')-muf_sq;
sigma1f=filter2(window,im1.*imf,'same')-mu1_muf;
sigma2f=filter2(window,im2.*imf,'same')-mu2_muf;
sigmaMaxf=filter2(window,im_max.*imf,'same')-mu_max_muf;
index1=find(mask1==1);
index2=find(mask2==1);
index3=find(mask3==1);
res1=mu1.*0;
res2=res1;
res3=res1;
res1(index1)=(sigma1f(index1)+C1)./(sqrt(abs(sigma1_sq(index1).*sigmaf_sq(index1)))+C1);
res2(index2)=(sigma2f(index2)+C2)./(sqrt(abs(sigma2_sq(index2).*sigmaf_sq(index2)))+C2);
res3(index3)=(sigmaMaxf(index3)+C3)./(sqrt(abs(sigmaMax_sq(index3).*sigmaf_sq(index3)))+C3);
buffer(:,:,1)=res1;
buffer(:,:,2)=res2;
buffer(:,:,3)=res3;
result=max(buffer,[],3);
A1=sum(mask1(:));
A2=sum(mask2(:));
A3=sum(mask3(:));
res=sum(result(:))/A3;