-
Notifications
You must be signed in to change notification settings - Fork 15
/
myphasecong3.m
580 lines (467 loc) · 23.4 KB
/
myphasecong3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
% function [phaseCongruency, or, M, m]=myphasecong3(varargin)
%
% This function is a revised version of Kovesi's phasecong3.m.
% Please "type myphasecong3" for detailed information.
%
%
% Z. Liu @NRCC[ July 31, 2006]
% PHASECONG2 - Computes edge and corner phase congruency in an image.
%
% This function calculates the PC_2 measure of phase congruency.
% This function supersedes PHASECONG
%
% There are potentially many arguments, here is the full usage:
%
% [M m or ft pc EO] = myphasecong3(im, nscale, norient, minWaveLength, ...
% mult, sigmaOnf, dThetaOnSigma, k, cutOff, g)
%
% However, apart from the image, all parameters have defaults and the
% usage can be as simple as:
%
% M = phasecong2(im);
%
% Arguments:
% Default values Description
%
% nscale 4 - Number of wavelet scales, try values 3-6
% norient 6 - Number of filter orientations.
% minWaveLength 3 - Wavelength of smallest scale filter.
% mult 2.1 - Scaling factor between successive filters.
% sigmaOnf 0.55 - Ratio of the standard deviation of the Gaussian
% describing the log Gabor filter's transfer function
% in the frequency domain to the filter center frequency.
% dThetaOnSigma 1.2 - Ratio of angular interval between filter orientations
% and the standard deviation of the angular Gaussian
% function used to construct filters in the
% freq. plane.
% k 2.0 - No of standard deviations of the noise energy beyond
% the mean at which we set the noise threshold point.
% You may want to vary this up to a value of 10 or
% 20 for noisy images
% cutOff 0.5 - The fractional measure of frequency spread
% below which phase congruency values get penalized.
% g 10 - Controls the sharpness of the transition in
% the sigmoid function used to weight phase
% congruency for frequency spread.
%
% Returned values:
% M - Maximum moment of phase congruency covariance.
% This is used as a indicator of edge strength.
% m - Minimum moment of phase congruency covariance.
% This is used as a indicator of corner strength.
% or - Orientation image in integer degrees 0-180,
% positive anticlockwise.
% 0 corresponds to a vertical edge, 90 is horizontal.
% ft - *Not correctly implemented at this stage*
% A complex valued image giving the weighted mean
% phase angle at every point in the image for each
% orientation.
% pc - Cell array of phase congruency images (values between 0 and 1)
% for each orientation
% EO - A 2D cell array of complex valued convolution results
%
% EO{s,o} = convolution result for scale s and orientation o. The real part
% is the result of convolving with the even symmetric filter, the imaginary
% part is the result from convolution with the odd symmetric filter.
%
% Hence:
% abs(EO{s,o}) returns the magnitude of the convolution over the
% image at scale s and orientation o.
% angle(EO{s,o}) returns the phase angles.
%
% Notes on specifying parameters:
%
% The parameters can be specified as a full list eg.
% >> [M m or ft pc EO] = phasecong2(im, 5, 6, 3, 2.5, 0.55, 1.2, 2.0, 0.4, 10);
%
% or as a partial list with unspecified parameters taking on default values
% >> [M m or ft pc EO] = phasecong2(im, 5, 6, 3);
%
% or as a partial list of parameters followed by some parameters specified via a
% keyword-value pair, remaining parameters are set to defaults, for example:
% >> [M m or ft pc EO] = phasecong2(im, 5, 6, 3, 'cutOff', 0.3, 'k', 2.5);
%
% The convolutions are done via the FFT. Many of the parameters relate to the
% specification of the filters in the frequency plane. The values do not seem
% to be very critical and the defaults are usually fine. You may want to
% experiment with the values of 'nscales' and 'k', the noise compensation factor.
%
% Notes on filter settings to obtain even coverage of the spectrum
% dthetaOnSigma 1.2 norient 6
% sigmaOnf .85 mult 1.3
% sigmaOnf .75 mult 1.6 (filter bandwidth ~1 octave)
% sigmaOnf .65 mult 2.1
% sigmaOnf .55 mult 3 (filter bandwidth ~2 octaves)
%
% For maximum speed the input image should have dimensions that correspond to
% powers of 2, but the code will operate on images of arbitrary size.
%
% See Also: PHASECONG, PHASESYM, GABORCONVOLVE, PLOTGABORFILTERS
% References:
%
% Peter Kovesi, "Image Features From Phase Congruency". Videre: A
% Journal of Computer Vision Research. MIT Press. Volume 1, Number 3,
% Summer 1999 http://mitpress.mit.edu/e-journals/Videre/001/v13.html
%
% Peter Kovesi, "Phase Congruency Detects Corners and
% Edges". Proceedings DICTA 2003, Sydney Dec 10-12
% April 1996 Original Version written
% August 1998 Noise compensation corrected.
% October 1998 Noise compensation corrected. - Again!!!
% September 1999 Modified to operate on non-square images of arbitrary size.
% May 2001 Modified to return feature type image.
% July 2003 Altered to calculate 'corner' points.
% October 2003 Speed improvements and refinements.
% July 2005 Better argument handling, changed order of return values
% August 2005 Made Octave compatible
% Copyright (c) 1996-2005 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% The software is provided "as is", without warranty of any kind.
%function [phaseCongruency, M, m, or, featType, PC, EO]=myphasecong3(varargin)
function [phaseCongruency, or, M, m]=myphasecong3(varargin)
% Get arguments and/or default values
[im, nscale, norient, minWaveLength, mult, sigmaOnf, ...
dThetaOnSigma,k, cutOff, g] = checkargs(varargin(:));
v = version; Octave = v(1)<'5'; % Crude Octave test
epsilon = .0001; % Used to prevent division by zero.
thetaSigma = pi/norient/dThetaOnSigma; % Calculate the standard deviation of the
% angular Gaussian function used to
% construct filters in the freq. plane.
[rows,cols] = size(im);
imagefft = fft2(im); % Fourier transform of image
zero = zeros(rows,cols);
totalEnergy = zero; % Total weighted phase congruency values (energy).
totalSumAn = zero; % Total filter response amplitude values.
orientation = zero; % Matrix storing orientation with greatest
% energy for each pixel.
EO = cell(nscale, norient); % Array of convolution results.
covx2 = zero; % Matrices for covariance data
covy2 = zero;
covxy = zero;
estMeanE2n = [];
ifftFilterArray = cell(1,nscale); % Array of inverse FFTs of filters
% Pre-compute some stuff to speed up filter construction
% Set up X and Y matrices with ranges normalised to +/- 0.5
% The following code adjusts things appropriately for odd and even values
% of rows and columns.
if mod(cols,2)
xrange = [-(cols-1)/2:(cols-1)/2]/(cols-1);
else
xrange = [-cols/2:(cols/2-1)]/cols;
end
if mod(rows,2)
yrange = [-(rows-1)/2:(rows-1)/2]/(rows-1);
else
yrange = [-rows/2:(rows/2-1)]/rows;
end
[x,y] = meshgrid(xrange, yrange);
radius = sqrt(x.^2 + y.^2); % Matrix values contain *normalised* radius from centre.
%radius(rows/2+1, cols/2+1) = 1; % Get rid of the 0 radius value in the middle
radius(floor(rows/2)+1,floor(cols/2)+1)=1; % so that taking the log of the radius will
% I add the FLOOR here % not cause trouble.
theta = atan2(-y,x); % Matrix values contain polar angle.
% (note -ve y is used to give +ve
% anti-clockwise angles)
radius = ifftshift(radius); % Quadrant shift radius and theta so that filters
theta = ifftshift(theta); % are constructed with 0 frequency at the corners.
sintheta = sin(theta);
costheta = cos(theta);
clear x; clear y; clear theta; % save a little memory
% Filters are constructed in terms of two components.
% 1) The radial component, which controls the frequency band that the filter
% responds to
% 2) The angular component, which controls the orientation that the filter
% responds to.
% The two components are multiplied together to construct the overall filter.
% Construct the radial filter components...
% First construct a low-pass filter that is as large as possible, yet falls
% away to zero at the boundaries. All log Gabor filters are multiplied by
% this to ensure no extra frequencies at the 'corners' of the FFT are
% incorporated as this seems to upset the normalisation process when
% calculating phase congrunecy.
lp = lowpassfilter([rows,cols],.45,15); % Radius .45, 'sharpness' 15
logGabor = cell(1,nscale);
for s = 1:nscale
wavelength = minWaveLength*mult^(s-1);
fo = 1.0/wavelength; % Centre frequency of filter.
logGabor{s} = exp((-(log(radius/fo)).^2) / (2 * log(sigmaOnf)^2));
logGabor{s} = logGabor{s}.*lp; % Apply low-pass filter
logGabor{s}(1,1) = 0; % Set the value at the 0 frequency point of the filter
% back to zero (undo the radius fudge).
end
% Then construct the angular filter components...
spread = cell(1,norient);
for o = 1:norient
angl = (o-1)*pi/norient; % Filter angle.
% For each point in the filter matrix calculate the angular distance from
% the specified filter orientation. To overcome the angular wrap-around
% problem sine difference and cosine difference values are first computed
% and then the atan2 function is used to determine angular distance.
ds = sintheta * cos(angl) - costheta * sin(angl); % Difference in sine.
dc = costheta * cos(angl) + sintheta * sin(angl); % Difference in cosine.
dtheta = abs(atan2(ds,dc)); % Absolute angular distance.
spread{o} = exp((-dtheta.^2) / (2 * thetaSigma^2)); % Calculate the
% angular filter component.
end
% The main loop...
for o = 1:norient % For each orientation.
% fprintf('Processing orientation %d\r',o);
if Octave fflush(1); end
angl = (o-1)*pi/norient; % Filter angle.
sumE_ThisOrient = zero; % Initialize accumulator matrices.
sumO_ThisOrient = zero;
sumAn_ThisOrient = zero;
Energy = zero;
for s = 1:nscale, % For each scale.
filter = logGabor{s} .* spread{o}; % Multiply radial and angular
% components to get the filter.
% if o == 1 % accumulate filter info for noise compensation (nominally the same
% for all orientations, hence it is only done once)
ifftFilt = real(ifft2(filter))*sqrt(rows*cols); % Note rescaling to match power
ifftFilterArray{s} = ifftFilt; % record ifft2 of filter
% end
% Convolve image with even and odd filters returning the result in EO
EO{s,o} = ifft2(imagefft .* filter);
An = abs(EO{s,o}); % Amplitude of even & odd filter response.
sumAn_ThisOrient = sumAn_ThisOrient + An; % Sum of amplitude responses.
sumE_ThisOrient = sumE_ThisOrient + real(EO{s,o}); % Sum of even filter convolution results.
sumO_ThisOrient = sumO_ThisOrient + imag(EO{s,o}); % Sum of odd filter convolution results.
if s==1 % Record mean squared filter value at smallest
EM_n = sum(sum(filter.^2)); % scale. This is used for noise estimation.
maxAn = An; % Record the maximum An over all scales.
else
maxAn = max(maxAn, An);
end
end % ... and process the next scale
% Get weighted mean filter response vector, this gives the weighted mean
% phase angle.
XEnergy = sqrt(sumE_ThisOrient.^2 + sumO_ThisOrient.^2) + epsilon;
MeanE = sumE_ThisOrient ./ XEnergy;
MeanO = sumO_ThisOrient ./ XEnergy;
% Now calculate An(cos(phase_deviation) - | sin(phase_deviation)) | by
% using dot and cross products between the weighted mean filter response
% vector and the individual filter response vectors at each scale. This
% quantity is phase congruency multiplied by An, which we call energy.
for s = 1:nscale,
E = real(EO{s,o}); O = imag(EO{s,o}); % Extract even and odd
% convolution results.
Energy = Energy + E.*MeanE + O.*MeanO - abs(E.*MeanO - O.*MeanE);
end
% Compensate for noise
% We estimate the noise power from the energy squared response at the
% smallest scale. If the noise is Gaussian the energy squared will have a
% Chi-squared 2DOF pdf. We calculate the median energy squared response
% as this is a robust statistic. From this we estimate the mean.
% The estimate of noise power is obtained by dividing the mean squared
% energy value by the mean squared filter value
medianE2n = median(reshape(abs(EO{1,o}).^2,1,rows*cols));
meanE2n = -medianE2n/log(0.5);
estMeanE2n(o) = meanE2n;
noisePower = meanE2n/EM_n; % Estimate of noise power.
% if o == 1
% Now estimate the total energy^2 due to noise
% Estimate for sum(An^2) + sum(Ai.*Aj.*(cphi.*cphj + sphi.*sphj))
EstSumAn2 = zero;
for s = 1:nscale
EstSumAn2 = EstSumAn2 + ifftFilterArray{s}.^2;
end
EstSumAiAj = zero;
for si = 1:(nscale-1)
for sj = (si+1):nscale
EstSumAiAj = EstSumAiAj + ifftFilterArray{si}.*ifftFilterArray{sj};
end
end
sumEstSumAn2 = sum(sum(EstSumAn2));
sumEstSumAiAj = sum(sum(EstSumAiAj));
% end % if o == 1
EstNoiseEnergy2 = 2*noisePower*sumEstSumAn2 + 4*noisePower*sumEstSumAiAj;
tau = sqrt(EstNoiseEnergy2/2); % Rayleigh parameter
EstNoiseEnergy = tau*sqrt(pi/2); % Expected value of noise energy
EstNoiseEnergySigma = sqrt( (2-pi/2)*tau^2 );
T = EstNoiseEnergy + k*EstNoiseEnergySigma; % Noise threshold
% The estimated noise effect calculated above is only valid for the PC_1 measure.
% The PC_2 measure does not lend itself readily to the same analysis. However
% empirically it seems that the noise effect is overestimated roughly by a factor
% of 1.7 for the filter parameters used here.
T = T/1.7; % Empirical rescaling of the estimated noise effect to
% suit the PC_2 phase congruency measure
Energy = max(Energy - T, zero); % Apply noise threshold
% Form weighting that penalizes frequency distributions that are
% particularly narrow. Calculate fractional 'width' of the frequencies
% present by taking the sum of the filter response amplitudes and dividing
% by the maximum amplitude at each point on the image.
width = sumAn_ThisOrient ./ (maxAn + epsilon) / nscale;
% Now calculate the sigmoidal weighting function for this orientation.
weight = 1.0 ./ (1 + exp( (cutOff - width)*g));
%----------------------------------------------
Energy_ThisOrient=weight.*Energy;
totalSumAn=totalSumAn+sumAn_ThisOrient;
totalEnergy=totalEnergy+Energy_ThisOrient;
if (o==1),
maxEnergy=Energy_ThisOrient;
else
change=Energy_ThisOrient>maxEnergy;
orientation=(o-1).*change+orientation.*(~change);
maxEnergy=max(maxEnergy, Energy_ThisOrient);
end
%----------------------------------------------
% Apply weighting to energy and then calculate phase congruency
PC{o} = weight.*Energy./sumAn_ThisOrient; % Phase congruency for this orientation
featType{o} = E+i*O;
% Build up covariance data for every point
covx = PC{o}*cos(angl);
covy = PC{o}*sin(angl);
covx2 = covx2 + covx.^2;
covy2 = covy2 + covy.^2;
covxy = covxy + covx.*covy;
end % For each orientation
% fprintf(' \r');
%------------------------------------------------------------
phaseCongruency=totalEnergy./(totalSumAn+epsilon);
orientation=orientation*(180/norient);
%------------------------------------------------------------
% Edge and Corner calculations
% The following is optimised code to calculate principal vector
% of the phase congruency covariance data and to calculate
% the minimumum and maximum moments - these correspond to
% the singular values.
% First normalise covariance values by the number of orientations/2
covx2 = covx2/(norient/2);
covy2 = covy2/(norient/2);
covxy = covxy/norient; % This gives us 2*covxy/(norient/2)
denom = sqrt(covxy.^2 + (covx2-covy2).^2)+epsilon;
sin2theta = covxy./denom;
cos2theta = (covx2-covy2)./denom;
or = atan2(sin2theta,cos2theta)/2; % Orientation perpendicular to edge.
or = round(or*180/pi); % Return result rounded to integer
% degrees.
neg = or < 0;
or = ~neg.*or + neg.*(or+180); % Adjust range from -90 to 90
% to 0 to 180.
M = (covy2+covx2 + denom)/2; % Maximum moment
m = (covy2+covx2 - denom)/2; % ... and minimum moment
%------------------------------------------------------------------
% CHECKARGS
%
% Function to process the arguments that have been supplied, assign
% default values as needed and perform basic checks.
function [im, nscale, norient, minWaveLength, mult, sigmaOnf, ...
dThetaOnSigma,k, cutOff, g] = checkargs(arg);
nargs = length(arg);
if nargs < 1
error('No image supplied as an argument');
end
% Set up default values for all arguments and then overwrite them
% with with any new values that may be supplied
im = [];
nscale = 4; % Number of wavelet scales.
norient = 6; % Number of filter orientations.
minWaveLength = 3; % Wavelength of smallest scale filter.
mult = 2.1; % Scaling factor between successive filters.
sigmaOnf = 0.55; % Ratio of the standard deviation of the
% Gaussian describing the log Gabor filter's
% transfer function in the frequency domain
% to the filter center frequency.
dThetaOnSigma = 1.2; % Ratio of angular interval between filter orientations
% and the standard deviation of the angular Gaussian
% function used to construct filters in the
% freq. plane.
k = 2.0; % No of standard deviations of the noise
% energy beyond the mean at which we set the
% noise threshold point.
cutOff = 0.5; % The fractional measure of frequency spread
% below which phase congruency values get penalized.
g = 10; % Controls the sharpness of the transition in
% the sigmoid function used to weight phase
% congruency for frequency spread.
% Allowed argument reading states
allnumeric = 1; % Numeric argument values in predefined order
keywordvalue = 2; % Arguments in the form of string keyword
% followed by numeric value
readstate = allnumeric; % Start in the allnumeric state
if readstate == allnumeric
for n = 1:nargs
if isa(arg{n},'char')
readstate = keywordvalue;
break;
else
if n == 1, im = arg{n};
elseif n == 2, nscale = arg{n};
elseif n == 3, norient = arg{n};
elseif n == 4, minWaveLength = arg{n};
elseif n == 5, mult = arg{n};
elseif n == 6, sigmaOnf = arg{n};
elseif n == 7, dThetaOnSigma = arg{n};
elseif n == 8, k = arg{n};
elseif n == 9, cutOff = arg{n};
elseif n == 10,g = arg{n};
end
end
end
end
% Code to handle parameter name - value pairs
if readstate == keywordvalue
while n < nargs
if ~isa(arg{n},'char') | ~isa(arg{n+1}, 'double')
error('There should be a parameter name - value pair');
end
if strncmpi(arg{n},'im' ,2), im = arg{n+1};
elseif strncmpi(arg{n},'nscale' ,2), nscale = arg{n+1};
elseif strncmpi(arg{n},'norient' ,2), norient = arg{n+1};
elseif strncmpi(arg{n},'minWaveLength',2), minWavelength = arg{n+1};
elseif strncmpi(arg{n},'mult' ,2), mult = arg{n+1};
elseif strncmpi(arg{n},'sigmaOnf',2), sigmaOnf = arg{n+1};
elseif strncmpi(arg{n},'dthetaOnSigma',2), dThetaOnSigma = arg{n+1};
elseif strncmpi(arg{n},'k' ,1), k = arg{n+1};
elseif strncmpi(arg{n},'cutOff' ,2), cutOff = arg{n+1};
elseif strncmpi(arg{n},'g' ,1), g = arg{n+1};
else error('Unrecognised parameter name');
end
n = n+2;
if n == nargs
error('Unmatched parameter name - value pair');
end
end
end
if isempty(im)
error('No image argument supplied');
end
if ~isa(im, 'double')
im = double(im);
end
if nscale < 1
error('nscale must be an integer >= 1');
end
if norient < 1
error('norient must be an integer >= 1');
end
if minWaveLength < 2
error('It makes little sense to have a wavelength < 2');
end
if cutOff < 0 | cutOff > 1
error('Cut off value must be between 0 and 1');
end
%#############################################################################
function f = lowpassfilter(sze, cutoff, n)
if cutoff < 0 | cutoff > 0.5
error('cutoff frequency must be between 0 and 0.5');
end
if rem(n,1) ~= 0 | n < 1
error('n must be an integer >= 1');
end
rows = sze(1); cols = sze(2);
% X and Y matrices with ranges normalised to +/- 0.5
x = (ones(rows,1) * [1:cols] - (fix(cols/2)+1))/cols;
y = ([1:rows]' * ones(1,cols) - (fix(rows/2)+1))/rows;
radius = sqrt(x.^2 + y.^2); % A matrix with every pixel = radius relative to centre.
f = fftshift( 1 ./ (1.0 + (radius ./ cutoff).^(2*n)) ); % The filter