-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcifar_main.py
219 lines (202 loc) · 6.38 KB
/
cifar_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import os
import datetime
import random
import numpy as np
import torch
from torch import nn
import torch.multiprocessing as mp
from torch.utils.tensorboard import SummaryWriter
from model.agent import Agent
from model.trainer import Trainer, train_local_mp
from model.cifar_models import CifarModel, CifarwithAttn
from data.cifar_data import CifarData
class CIFARAgent(Agent):
'''
CIFARAgent for CIFAR10 and CIFAR100.
'''
def __init__(self, global_args, subset=tuple(range(10)),
fine='CIFAR10', train_indices=None, test_indices=None):
super().__init__(global_args, subset, fine, train_indices, test_indices)
def load_data(self):
print("=> loading data")
self.data = CifarData(self.subset, self.fine, self.train_indices, self.test_indices)
self.train_loader = self.data.get_train_loader(self.batch_size, self.num_workers)
self.test_loader = self.data.get_test_loader(self.batch_size, self.num_workers)
def build_model(self):
print("=> building model")
if self.fine == 'CIFAR10':
num_class = 10
elif self.fine == 'CIFAR100':
num_class = 100
else:
raise ValueError('Invalid dataset choice.')
if self.fusion == 'none':
self.model = CifarModel(num_class).to(self.device)
else:
self.model = CifarwithAttn(self.fusion, num_class).to(self.device)
if self.fusion in ['multi', 'single']:
self.shadow = torch.zeros(self.model.attn.gamma.size(), device=self.device)
self.criterion = nn.CrossEntropyLoss().to(self.device)
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.lr,
momentum=0.9, weight_decay=5e-4)
class CIFARTrainer(Trainer):
'''
CIFAR Trainer.
'''
def __init__(self, global_args):
super().__init__(global_args)
# init the global model
self.global_agent = CIFARAgent(global_args, fine=self.fine)
self.global_agent.load_data()
self.global_agent.build_model()
self.global_agent.resume_model(self.resume)
def build_local_models(self, global_args):
self.nets_pool = list()
train_indices = np.random.permutation(50000)
test_indices = np.random.permutation(10000)
train_per_local = len(train_indices) // self.num_locals
test_per_local = len(test_indices) // self.num_locals
for i in range(self.num_locals):
t_train_indices = train_indices[i * train_per_local: (i + 1) * train_per_local]
t_test_indices = test_indices[i * test_per_local: (i + 1) * test_per_local]
self.nets_pool.append(CIFARAgent(global_args, fine=self.fine, subset=tuple(range(10)),
train_indices=t_train_indices, test_indices=t_test_indices))
self.init_local_models()
def train(self):
ctx = mp.get_context('forkserver')
self.num_per_rnd = 5
for rnd in range(self.rounds):
random.shuffle(self.nets_pool)
pool = ctx.Pool(self.num_per_rnd)
self.q = ctx.Manager().Queue()
pool.starmap(train_local_mp, [(self.local_epochs, net, rnd, self.q) for net in self.nets_pool[:self.num_per_rnd]])
pool.close()
pool.join()
self.update_global(rnd)
def main():
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
cifar_trainer = CIFARTrainer(args)
# test
if args.mode == 'test':
cifar_trainer.test()
return
writer_dir = os.path.join(f'runs/{args.fine}_adam_{args.num_locals}',
datetime.datetime.now().strftime('%b%d_%H-%M'))
cifar_trainer.writer = SummaryWriter(writer_dir)
cifar_trainer.build_local_models(args)
cifar_trainer.train()
cifar_trainer.writer.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_file',
type=str,
default='model.pth.tar',
help='File to save model.'
)
parser.add_argument(
'--mode',
type=str,
default='train',
help='train or test.'
)
parser.add_argument(
'--fine',
type=str,
default='CIFAR10',
choices=('CIFAR10', 'CIFAR100'),
help='Fine choice of dataset.'
)
parser.add_argument(
'--fusion',
type=str,
default='none',
choices=('none', 'multi', 'single', 'conv'),
help='Method for feature fusion.'
)
parser.add_argument(
'--num_workers',
type=int,
default=0,
help='number of workers to preprocess data, must be 0 for mp agents.'
)
parser.add_argument(
'--num_locals',
type=int,
default=2,
help='number of local agents.'
)
parser.add_argument(
'--rounds',
type=int,
default=500,
help='number of communication rounds.'
)
parser.add_argument(
'--lr',
type=float,
default=5e-3,
help='learning rate.'
)
parser.add_argument(
'--min_lr',
type=float,
default=1e-4,
help='minimum learning rate.'
)
parser.add_argument(
'--decay_rate',
type=float,
default=0.99,
help='lr decay rate.'
)
parser.add_argument(
'--batch_size',
type=int,
default=64,
help='Batch size. (B)'
)
parser.add_argument(
'--local_epochs',
type=int,
default=5,
help='Number of epoch in local. (E)'
)
parser.add_argument(
'--meta_lr',
type=float,
default=1e-3,
help='meta learning rate for model aggregation.'
)
parser.add_argument(
'--resume',
default='',
type=str,
metavar='PATH',
help='path to resume checkpoint (default: none)'
)
parser.add_argument(
'--model_dir',
type=str,
default='models',
help='Directory for storing checkpoint file.'
)
parser.add_argument(
'--gpu',
type=str,
default='2',
help='Number of gpu to use'
)
parser.add_argument(
'--seed',
type=int,
default=1234,
help='Random seed'
)
args = parser.parse_args()
main()