-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
592 lines (500 loc) · 19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import warnings
import numpy as np
import os
import time
from tqdm import tqdm
import copy
import math
import gc
import torch
import torch.nn as nn
import torch.autograd.forward_ad as fwAD
from functools import partial
import threading
from data import subsample
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
plt.rcParams['font.family'] = 'Times New Roman'
plt.rcParams.update({'font.size': 14})
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class _ECELoss(torch.nn.Module):
def __init__(self, n_bins=15):
"""
n_bins (int): number of confidence interval bins
"""
super(_ECELoss, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
bin_boundaries_plot = torch.linspace(0, 1, 11)
self.bin_lowers_plot = bin_boundaries_plot[:-1]
self.bin_uppers_plot = bin_boundaries_plot[1:]
def forward(self, confidences, predictions, labels, title=None):
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=confidences.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
accuracy_in_bin_list = []
for bin_lower, bin_upper in zip(self.bin_lowers_plot, self.bin_uppers_plot):
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
accuracy_in_bin = 0
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean().item()
accuracy_in_bin_list.append(accuracy_in_bin)
if title:
fig = plt.figure(figsize=(8,6))
p1 = plt.bar(np.arange(10) / 10., accuracy_in_bin_list, 0.1, align = 'edge', edgecolor ='black')
p2 = plt.plot([0,1], [0,1], '--', color='gray')
plt.ylabel('Accuracy', fontsize=18)
plt.xlabel('Confidence', fontsize=18)
#plt.title(title)
plt.xticks(np.arange(0, 1.01, 0.2), fontsize=12)
plt.yticks(np.arange(0, 1.01, 0.2), fontsize=12)
plt.xlim(left=0,right=1)
plt.ylim(bottom=0,top=1)
plt.grid(True)
#plt.legend((p1[0], p2[0]), ('Men', 'Women'))
plt.text(0.1, 0.83, 'ECE: {:.4f}'.format(ece.item()), fontsize=18)
fig.tight_layout()
plt.savefig(title, format='pdf', dpi=600, bbox_inches='tight')
return ece
def psd_safe_eigen(K):
Kprime = K.clone()
jitter = 0
jitter_new = None
while True:
p, q = torch.linalg.eigh(Kprime)
if (p > 0).all():
if jitter_new is not None:
warnings.warn(
f"K not p.d., added jitter of {jitter_new} to the diagonal",
RuntimeWarning,
)
return p, q
else:
if jitter == 0:
jitter_new = 1e-10
else:
jitter_new = jitter * 10
Kprime.diagonal().add_(jitter_new - jitter)
jitter = jitter_new
def psd_safe_cholesky(A, upper=False, out=None, jitter=None):
"""Compute the Cholesky decomposition of A. If A is only p.s.d, add a small jitter to the diagonal.
Args:
:attr:`A` (Tensor):
The tensor to compute the Cholesky decomposition of
:attr:`upper` (bool, optional):
See torch.cholesky
:attr:`out` (Tensor, optional):
See torch.cholesky
:attr:`jitter` (float, optional):
The jitter to add to the diagonal of A in case A is only p.s.d. If omitted, chosen
as 1e-6 (float) or 1e-8 (double)
"""
try:
L = torch.linalg.cholesky(A, upper=upper, out=out)
return L
except RuntimeError as e:
isnan = torch.isnan(A)
if isnan.any():
raise NanError(
f"cholesky_cpu: {isnan.sum().item()} of {A.numel()} elements of the {A.shape} tensor are NaN."
)
if jitter is None:
jitter = 1e-6 if A.dtype == torch.float32 else 1e-8
Aprime = A.clone()
jitter_prev = 0
for i in range(10):
jitter_new = jitter * (10 ** i)
Aprime.diagonal(dim1=-2, dim2=-1).add_(jitter_new - jitter_prev)
jitter_prev = jitter_new
try:
L = torch.linalg.cholesky(Aprime, upper=upper, out=out)
warnings.warn(
f"A not p.d., added jitter of {jitter_new} to the diagonal",
RuntimeWarning,
)
return L
except RuntimeError:
continue
# return torch.randn_like(A).tril()
raise e
@torch.enable_grad()
def jac(model, xs, ys, num_classes, full=False, dtype=torch.float32):
I = torch.eye(num_classes).to(xs.device)
Js = []
for i, (x, y) in enumerate(zip(xs, ys)):
o = model(x.unsqueeze(0))
model.zero_grad()
if full:
for j in range(num_classes):
o.backward(I[j].view(1, -1), retain_graph = False
if j == num_classes - 1 else True)
g = torch.cat([p.grad.flatten() for p in model.parameters()])
Js.append(g)
model.zero_grad()
else:
grad_in = I[y.item()].view(1, -1)
o.backward(grad_in)
g = torch.cat([p.grad.flatten() for p in model.parameters()])
Js.append(g)
return torch.stack(Js)
def build_dual_params_list(model, params, x_subsample, y_subsample, num_classes=10, random=True, K=20, args=None, num_batches=1, verbose=True):
if args is not None:
random = args.random
num_classes = args.num_classes
K = args.K
indices = torch.empty_like(y_subsample).random_(num_classes).long() if random else y_subsample
if num_batches == 1:
Js = jac(model, x_subsample, indices, num_classes)
mat = Js @ Js.T
else:
mat = torch.empty(x_subsample.shape[0], x_subsample.shape[0], device=x_subsample.device)
s = x_subsample.shape[0] // num_batches
for i in tqdm(range(0, x_subsample.shape[0], s), desc='Doing matmul', total=num_batches):
ii = min(i + s, x_subsample.shape[0])
Js_b = jac(model, x_subsample[i:ii], indices[i:ii], num_classes)
for j in range(0, x_subsample.shape[0], s):
jj = min(j + s, x_subsample.shape[0])
Js_b2 = jac(model, x_subsample[j:jj], indices[j:jj], num_classes)
mat[i:ii, j:jj] = Js_b @ Js_b2.T
# print(i, j, torch.dist(Js_b, Js1[i:ii]), torch.dist(Js_b2, Js1[j:jj]), torch.dist(mat[i:ii, j:jj], mat1[i:ii, j:jj]))
# print(mat[i:ii, j:jj], mat1[i:ii, j:jj])
del Js_b, Js_b2
p, q = psd_safe_eigen(mat)
p = p[range(-1, -(K+1), -1)]
q = q[:, range(-1, -(K+1), -1)]
tmp = q.div(p.sqrt())
p = (p / x_subsample.shape[0])
if num_batches == 1:
V = Js.T @ tmp
else:
V = torch.zeros(count_parameters(model), K, device=tmp.device)
s = x_subsample.shape[0] // num_batches
for i in tqdm(range(0, x_subsample.shape[0], s), desc='Doing matmul', total=num_batches):
ii = min(i + s, x_subsample.shape[0])
Js_b = jac(model, x_subsample[i:ii], indices[i:ii], num_classes)
V += Js_b.T @ tmp[i:ii]
del Js_b
if verbose:
print('eigenvalues: ', p)
# print(V.norm(dim=1, p=2))
dual_params_list = []
for item in V.T:
dual_params = {}
start = 0
for name, param in params.items():
dual_params[name] = item[start:start+param.numel()].view_as(param) #.to(param.device)
start += param.numel()
dual_params_list.append(dual_params)
return dual_params_list
def find_module_by_name(model, name):
names = name.split(".")
module = model
for n in names[:-1]:
module = getattr(module, n)
return module, names[-1]
@torch.no_grad()
def Psi_raw(model, params, dual_params_list, x_batch, return_output=False):
with fwAD.dual_level():
Jvs = []
for dual_params in dual_params_list:
for name, param in params.items():
module, name_p = find_module_by_name(model, name)
delattr(module, name_p)
setattr(module, name_p, fwAD.make_dual(param, dual_params[name]))
# with torch.cuda.amp.autocast(): # not supported yet
output, Jv = fwAD.unpack_dual(model(x_batch))
Jvs.append(Jv)
Jvs = torch.stack(Jvs, -1)
if return_output:
return Jvs, output
else:
return Jvs
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Linear(7 * 7 * 32, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
def check_approx_error(args, model, params, train_loader_noaug, val_loader, device, total=2000):
if os.path.isfile(args.save_dir + '/approx_errors.npy'):
results = np.load(args.save_dir + '/approx_errors.npy')
draw_matrix(args.save_dir, results[:10], 'approx_error_ntk.pdf')
draw_matrix(args.save_dir, results[10:], 'approx_error_ella_cov.pdf')
return
model2 = copy.deepcopy(model)
x_full, y_full = subsample(train_loader_noaug, args.num_classes,
total+300, args.balanced, device)
x_test, y_test = x_full[total:total+256], y_full[total:total+256]
x_full, y_full = x_full[:total], y_full[:total]
jac_full = jac(model, x_full, y_full, args.num_classes, full=True)
jac_test = jac(model, x_test, y_test, args.num_classes, full=True).view(
x_test.shape[0], args.num_classes, -1)
K1 = jac_full @ jac_full.T
K1_norm = torch.linalg.norm(K1, ord=2)
with torch.no_grad():
prob_full = model(x_full).softmax(-1).cpu()
Lambda_full = prob_full.diag_embed() - prob_full[:, :, None] * prob_full[:, None, :]
JLJ = torch.einsum('NCP,NCD,NDQ->PQ', jac_full.view(total, args.num_classes, -1),
Lambda_full, jac_full.view(total, args.num_classes, -1))
Sigma1 = JLJ + torch.eye(JLJ.shape[0]) / args.sigma2
Sigma1 = Sigma1.inverse()
# Sigma1_norm = torch.linalg.norm(Sigma1, ord=2)
# eq 5
pred1 = jac_test @ Sigma1 @ jac_test.permute(0, 2, 1)
results = np.zeros((20, 10))
for i, M in enumerate([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2000]):
J_x_subsample = jac(model, x_full[:M], y_full[:M],
args.num_classes, random=args.random)
mat = J_x_subsample @ J_x_subsample.T
p, q = psd_safe_eigen(mat)
for j, K in enumerate([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2000]):
if K > M:
continue
p = p[range(-1, -(K+1), -1)]
q = q[:, range(-1, -(K+1), -1)]
tmp = q.div(p.sqrt())
V = Js.T @ tmp
dual_params_list = []
for item in V.T:
dual_params = {}
start = 0
for name, param in params.items():
dual_params[name] = item[start:start+param.numel()].view_as(param) #.to(param.device)
start += param.numel()
dual_params_list.append(dual_params)
Psi = partial(Psi_raw, model2, params, dual_params_list)
psi_full = Psi(x_full).cpu()
psi_test = Psi(x_test).cpu()
# nystrom approximation of K1
K2 = psi_full.flatten(0, 1) @ psi_full.flatten(0, 1).T
# normalized E'
results[i, j] = torch.linalg.norm(K1 - K2, ord=2) / K1_norm
# Eq 8
G = torch.einsum('NCP,NCD,NDQ->PQ', psi_full, Lambda_full, psi_full) + torch.eye(psi_full.shape[-1]) / args.sigma2
pred2 = psi_test @ G.inverse() @ psi_test.permute(0, 2, 1)
results[i+10, j] = (torch.linalg.norm(pred1 - pred2, ord=2, dim=(-2, -1)) / torch.linalg.norm(pred1, ord=2, dim=(-2, -1))).mean()
print(i, j, results[i, j], results[i+10, j])
if 0 and K == M:
# the explicit nystrom approximation
K3 = jac_full @ J_x_subsample.T @ (J_x_subsample @ J_x_subsample.T).pinverse() @ (J_x_subsample @ jac_full.T)
print('check1', torch.dist(K2, K3), K2[:5,:5], K3[:5,:5])
# Sigma' in eq 21
Sigma2 = (J_x_subsample @ JLJ @ J_x_subsample.T + (J_x_subsample @ J_x_subsample.T) / args.sigma2).inverse()
Sigma2 = J_x_subsample.T @ Sigma2 @ J_x_subsample
# another form of Sigma' in Appendix A.4
P = J_x_subsample.T @ (J_x_subsample @ J_x_subsample.T).inverse() @ J_x_subsample
Sigma3 = (P @ JLJ @ P + torch.eye(JLJ.shape[0]) / args.sigma2).inverse() + args.sigma2 * (P - torch.eye(JLJ.shape[0]))
print('check2', torch.dist(Sigma2, Sigma3), Sigma2[:5, :5], Sigma3[:5, :5])
# eq 21 equals to eq 8
pred3 = jac_test @ Sigma2 @ jac_test.permute(0, 2, 1)
print('check3', torch.dist(pred2, pred3), pred2[5], pred3[5])
# E
E = torch.linalg.norm(Sigma1 - Sigma2, ord=2)
print('E', torch.dist(Sigma1, Sigma2), E, Sigma1_norm, E / Sigma1_norm)
print(Sigma1[:5, :5], Sigma2[:5, :5])
np.save(args.save_dir + '/approx_errors', results)
draw_matrix(args.save_dir, results[:10], 'approx_error_ntk.pdf')
draw_matrix(args.save_dir, results[10:], 'approx_error_ella_cov.pdf')
def draw_matrix(save_dir, matrix, title):
ma = matrix.max()
mi = 0
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111)
ax.tick_params(axis='y', which='major', labelsize=12)
ax.tick_params(axis='y', which='minor', labelsize=12)
ax.tick_params(axis='x', which='major', labelsize=12)
ax.tick_params(axis='x', which='minor', labelsize=12)
im = ax.imshow(matrix, cmap='YlGn', vmin=mi, vmax=ma)
ax.set_xlabel('$K$')
ax.set_ylabel('$M$')
ax.set_xticks(range(10))
ax.set_xticklabels(map(str, [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2000]))
ax.set_yticks(range(10))
ax.set_yticklabels(map(str, [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2000]))
ax.spines['bottom'].set_color('gray')
ax.spines['top'].set_color('gray')
ax.spines['right'].set_color('gray')
ax.spines['left'].set_color('gray')
ax.set_axisbelow(True)
fig.subplots_adjust(right=0.95)
cbar_ax = fig.add_axes([0.98, 0.15, 0.01, 0.8])
fig.colorbar(im, cax=cbar_ax)
fig.tight_layout()
fig.savefig(os.path.join(save_dir, title), format='pdf', dpi=1000, bbox_inches='tight')
def draw_vector(save_dir, y, title):
fig = plt.figure(figsize=(7, 5))
ax = fig.add_subplot(111)
ax.tick_params(axis='y', which='major', labelsize=12)
ax.tick_params(axis='y', which='minor', labelsize=12)
ax.tick_params(axis='x', which='major', labelsize=12)
ax.tick_params(axis='x', which='minor', labelsize=12)
x = np.arange(len(y))
b = ax.bar(x, y)
ax.set_xticks(x)
ax.set_xticklabels(map(str, [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2000]))
# ax.set_yscale('log')
ax.set_xlabel('$M(=K)$')
ax.set_ylabel('$\mathcal{E}/\Vert\mathcal{\Sigma}\Vert$')
ax.spines['bottom'].set_color('gray')
ax.spines['top'].set_color('gray')
ax.spines['right'].set_color('gray')
ax.spines['left'].set_color('gray')
fig.tight_layout()
fig.savefig(os.path.join(save_dir, title), format='pdf', dpi=1000, bbox_inches='tight')
def measure_speed(model, params, dual_params_list, model_bk, x, y, runs=500):
torch.cuda.current_stream().synchronize()
t2 = time.time()
with torch.no_grad():
with fwAD.dual_level():
dual_params = dual_params_list[0]
for name, param in params.items():
module, name_p = find_module_by_name(model, name)
delattr(module, name_p)
setattr(module, name_p, fwAD.make_dual(param, dual_params[name]))
for _ in range(500):
model(x)
torch.cuda.current_stream().synchronize()
t3 = time.time()
torch.cuda.current_stream().synchronize()
t0 = time.time()
with torch.no_grad():
for _ in range(500):
model_bk(x)
torch.cuda.current_stream().synchronize()
t1 = time.time()
print("Time cost comparison {:.4f} vs. {:.4f} ({:.4f}K times)".format(
(t3-t2)/500, (t1-t0)/500, (t3-t2)/(t1-t0)))
# def do_dot(a, b, out):
# out[:] = torch.matmul(a, b)
# def parallel_mm(a, b, nblocks, mblocks=1, use_gpu=False):
# """
# Return the matrix product a @ b.
# """
# bT = b.T
# # assert a.shape[0] % nblocks == 0 and bT.shape[0] % mblocks == 0
# s = a.shape[0]//nblocks
# t = bT.shape[0]//mblocks
#
# #a_blocks = a.view(nblocks, s, a.shape[1])
# #bT_blocks = bT.view(mblocks, t, bT.shape[1])
# out = torch.empty((a.shape[0], bT.shape[0]))
# if use_gpu:
# for i in tqdm(range(0, a.shape[0], s), desc='Doing matmul', total=nblocks):
# m1 = a[i:min(i + s, a.shape[0])].cuda(non_blocking=True).float()
# for j in range(0, bT.shape[0], t):
# with torch.no_grad():
# m2 = bT[j:min(j + t, bT.shape[0])].cuda(non_blocking=True).float()
# out[i:min(i + s, a.shape[0]), j:min(j + t, bT.shape[0])] = (m1 @ m2.T).cpu()
# del m1, m2
# else:
# threads = []
# for i in tqdm(range(0, a.shape[0], s), desc='Doing matmul', total=nblocks):
# for j in range(0, bT.shape[0], t):
# th = threading.Thread(target=do_dot,
# args=(a[i:min(i + s, a.shape[0])].float(),
# bT[j:min(j + t, bT.shape[0])].float().T,
# out[i:min(i + s, a.shape[0]), j:min(j + t, bT.shape[0])]))
# th.start()
# threads.append(th)
#
# for th in threads:
# th.join()
#
# return out
def remove_wn(deq_model):
for i, branch in enumerate(deq_model.fullstage.branches):
for block in branch.blocks:
block._wnorm()
block.conv1_fn.remove(block.conv1)
block.conv2_fn.remove(block.conv2)
deq_model.fullstage.post_fuse_fns[i].remove(deq_model.fullstage.post_fuse_layers[i].conv)
def fuse_single_conv_bn_pair(block1, block2):
if isinstance(block1, nn.BatchNorm2d) and isinstance(block2, nn.Conv2d):
m = block1
conv = block2
bn_st_dict = m.state_dict()
conv_st_dict = conv.state_dict()
# BatchNorm params
eps = m.eps
mu = bn_st_dict['running_mean']
var = bn_st_dict['running_var']
gamma = bn_st_dict['weight']
if 'bias' in bn_st_dict:
beta = bn_st_dict['bias']
else:
beta = torch.zeros(gamma.size(0)).float().to(gamma.device)
# Conv params
W = conv_st_dict['weight']
if 'bias' in conv_st_dict:
bias = conv_st_dict['bias']
else:
bias = torch.zeros(W.size(0)).float().to(gamma.device)
denom = torch.sqrt(var + eps)
b = beta - gamma.mul(mu).div(denom)
A = gamma.div(denom)
bias *= A
A = A.expand_as(W.transpose(0, -1)).transpose(0, -1)
W.mul_(A)
bias.add_(b)
conv.weight.data.copy_(W)
if conv.bias is None:
conv.bias = torch.nn.Parameter(bias)
else:
conv.bias.data.copy_(bias)
return conv
else:
return False
def fuse_bn_recursively(model):
previous_name = None
for module_name in model._modules:
previous_name = module_name if previous_name is None else previous_name # Initialization
conv_fused = fuse_single_conv_bn_pair(model._modules[module_name], model._modules[previous_name])
if conv_fused:
model._modules[previous_name] = conv_fused
model._modules[module_name] = nn.Identity()
if len(model._modules[module_name]._modules) > 0:
fuse_bn_recursively(model._modules[module_name])
previous_name = module_name
return model
if __name__ == '__main__':
a = torch.randn(3333, 1111)
b = torch.randn(1111, 222)
start = time.time()
r1 = parallel_mm(a, b, 13, 13, True)
time_par = time.time() - start
print('parallel_mm: {:.2f} seconds taken'.format(time_par))
start = time.time()
r2 = torch.matmul(a, b)
time_dot = time.time() - start
print('torch.matmul: {:.2f} seconds taken'.format(time_dot))
# print(r1[:10, :10])
# print(r2[:10, :10])
# print(r1[-10:, -10:])
# print(r2[-10:, -10:])
assert torch.allclose(r1, r2, atol=1e-4), 'dist is {}/{}'.format(torch.dist(r1, r2).item(), torch.dist(r1, torch.zeros_like(r1)).item())