-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_indices.h
187 lines (161 loc) · 6.22 KB
/
all_indices.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef FLANN_ALL_INDICES_H_
#define FLANN_ALL_INDICES_H_
#include "general.h"
#include "nn_index.h"
#include "lsh_index.h"
namespace flann
{
/**
* enable_if sfinae helper
*/
template<bool, typename T = void> struct enable_if{};
template<typename T> struct enable_if<true, T> { typedef T type; };
/**
* disable_if sfinae helper
*/
template<bool, typename T> struct disable_if{ typedef T type; };
template<typename T> struct disable_if<true, T> { };
/**
* Check if two type are the same
*/
template <typename T, typename U>
struct same_type
{
enum { value = false };
};
template<typename T>
struct same_type<T, T>
{
enum { value = true };
};
/*
#define HAS_MEMBER(member) \
template<typename T> \
struct member {
\
typedef char No; \
typedef long Yes; \
template<typename C> static Yes test(typename C::member*); \
template<typename C> static No test(...); \
enum { value = sizeof (test<T>(0)) == sizeof(Yes) }; \
};
HAS_MEMBER(needs_kdtree_distance)
HAS_MEMBER(needs_vector_space_distance)
HAS_MEMBER(is_kdtree_distance)
HAS_MEMBER(is_vector_space_distance) */
struct DummyDistance
{
typedef float ElementType;
typedef float ResultType;
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
{
return ResultType(0);
}
template <typename U, typename V>
inline ResultType accum_dist(const U& a, const V& b, int) const
{
return ResultType(0);
}
};
/**
* Checks if an index and a distance can be used together
*/
template<template <typename> class Index, typename Distance, typename ElemType>
struct valid_combination
{
static const bool value = same_type<ElemType, typename Distance::ElementType>::value &&
(!needs_kdtree_distance<Index<DummyDistance> >::value || is_kdtree_distance<Distance>::value) &&
(!needs_vector_space_distance<Index<DummyDistance> >::value || is_kdtree_distance<Distance>::value || is_vector_space_distance<Distance>::value);
};
/*********************************************************
* Create index
**********************************************************/
template <template<typename> class Index, typename Distance, typename T>
inline NNIndex<Distance>* create_index_(flann::Matrix<T> data, const flann::IndexParams& params, const Distance& distance,
typename enable_if<valid_combination<Index, Distance, T>::value, void>::type* = 0)
{
return new Index<Distance>(data, params, distance);
}
template <template<typename> class Index, typename Distance, typename T>
inline NNIndex<Distance>* create_index_(flann::Matrix<T> data, const flann::IndexParams& params, const Distance& distance,
typename disable_if<valid_combination<Index, Distance, T>::value, void>::type* = 0)
{
return NULL;
}
template<typename Distance>
inline NNIndex<Distance>*
create_index_by_type(const flann_algorithm_t index_type,
const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
{
typedef typename Distance::ElementType ElementType;
NNIndex<Distance>* nnIndex;
switch (index_type) {
case FLANN_INDEX_LINEAR:
nnIndex = create_index_<LinearIndex, Distance, ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_KDTREE_SINGLE:
nnIndex = create_index_<KDTreeSingleIndex, Distance, ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_KDTREE:
nnIndex = create_index_<KDTreeIndex, Distance, ElementType>(dataset, params, distance);
break;
//! #define this symbol before including flann.h to enable GPU search algorithms. But you have
//! to link libflann_cuda then!
#ifdef FLANN_USE_CUDA
case FLANN_INDEX_KDTREE_CUDA:
nnIndex = create_index_<KDTreeCuda3dIndex, Distance, ElementType>(dataset, params, distance);
break;
#endif
case FLANN_INDEX_KMEANS:
nnIndex = create_index_<KMeansIndex, Distance, ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_COMPOSITE:
nnIndex = create_index_<CompositeIndex, Distance, ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_AUTOTUNED:
nnIndex = create_index_<AutotunedIndex, Distance, ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_HIERARCHICAL:
nnIndex = create_index_<HierarchicalClusteringIndex, Distance, ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_LSH:
nnIndex = create_index_<LshIndex, Distance, ElementType>(dataset, params, distance);
break;
default:
throw FLANNException("Unknown index type");
}
if (nnIndex == NULL) {
throw FLANNException("Unsupported index/distance combination");
}
return nnIndex;
}
}
#endif /* FLANN_ALL_INDICES_H_ */