-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_index.h
908 lines (799 loc) · 23.5 KB
/
nn_index.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef FLANN_NNINDEX_H
#define FLANN_NNINDEX_H
#include <vector>
#include "general.h"
#include "matrix.h"
//#include "params.h"
#include "result_set.h"
//#include "dynamic_bitset.h"
//#include "saving.h"
namespace flann
{
#define KNN_HEAP_THRESHOLD 250
class IndexBase
{
public:
virtual ~IndexBase() {};
virtual size_t veclen() const = 0;
virtual size_t size() const = 0;
virtual flann_algorithm_t getType() const = 0;
virtual int usedMemory() const = 0;
//virtual IndexParams getParameters() const = 0;
virtual void loadIndex(FILE* stream) = 0;
virtual void saveIndex(FILE* stream) = 0;
};
/**
* Nearest-neighbour index base class
*/
template <typename Distance>
class NNIndex : public IndexBase
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
NNIndex(Distance d) : distance_(d), last_id_(0), size_(0), size_at_build_(0), veclen_(0),
removed_(false), removed_count_(0), data_ptr_(NULL)
{
}
NNIndex(const IndexParams& params, Distance d) : distance_(d), last_id_(0), size_(0), size_at_build_(0), veclen_(0),
index_params_(params), removed_(false), removed_count_(0), data_ptr_(NULL)
{
}
NNIndex(const NNIndex& other) :
distance_(other.distance_),
last_id_(other.last_id_),
size_(other.size_),
size_at_build_(other.size_at_build_),
veclen_(other.veclen_),
index_params_(other.index_params_),
removed_(other.removed_),
removed_points_(other.removed_points_),
removed_count_(other.removed_count_),
ids_(other.ids_),
points_(other.points_),
data_ptr_(NULL)
{
if (other.data_ptr_) {
data_ptr_ = new ElementType[size_*veclen_];
std::copy(other.data_ptr_, other.data_ptr_ + size_*veclen_, data_ptr_);
for (size_t i = 0; i<size_; ++i) {
points_[i] = data_ptr_ + i*veclen_;
}
}
}
virtual ~NNIndex()
{
if (data_ptr_) {
delete[] data_ptr_;
}
}
virtual NNIndex* clone() const = 0;
/**
* Builds the index
*/
virtual void buildIndex()
{
freeIndex();
cleanRemovedPoints();
// building index
buildIndexImpl();
size_at_build_ = size_;
}
/**
* Builds the index using the specified dataset
* @param dataset the dataset to use
*/
virtual void buildIndex(const Matrix<ElementType>& dataset)
{
setDataset(dataset);
this->buildIndex();
}
/**
* @brief Incrementally add points to the index.
* @param points Matrix with points to be added
* @param rebuild_threshold
*/
virtual void addPoints(const Matrix<ElementType>& points, float rebuild_threshold = 2)
{
throw FLANNException("Functionality not supported by this index");
}
/**
* Remove point from the index
* @param index Index of point to be removed
*/
virtual void removePoint(size_t id)
{
if (!removed_) {
ids_.resize(size_);
for (size_t i = 0; i<size_; ++i) {
ids_[i] = i;
}
removed_points_.resize(size_);
removed_points_.reset();
last_id_ = size_;
removed_ = true;
}
size_t point_index = id_to_index(id);
if (point_index != size_t(-1) && !removed_points_.test(point_index)) {
removed_points_.set(point_index);
removed_count_++;
}
}
/**
* Get point with specific id
* @param id
* @return
*/
virtual ElementType* getPoint(size_t id)
{
size_t index = id_to_index(id);
if (index != size_t(-1)) {
return points_[index];
}
else {
return NULL;
}
}
/**
* @return number of features in this index.
*/
inline size_t size() const
{
return size_ - removed_count_;
}
/**
* @return The dimensionality of the features in this index.
*/
inline size_t veclen() const
{
return veclen_;
}
/**
* Returns the parameters used by the index.
*
* @return The index parameters
*/
IndexParams getParameters() const
{
return index_params_;
}
template<typename Archive>
void serialize(Archive& ar)
{
IndexHeader header;
if (Archive::is_saving::value) {
header.h.data_type = flann_datatype_value<ElementType>::value;
header.h.index_type = getType();
header.h.rows = size_;
header.h.cols = veclen_;
}
ar & header;
// sanity checks
if (Archive::is_loading::value) {
if (strncmp(header.h.signature,
FLANN_SIGNATURE_,
strlen(FLANN_SIGNATURE_) - strlen("v0.0")) != 0) {
throw FLANNException("Invalid index file, wrong signature");
}
if (header.h.data_type != flann_datatype_value<ElementType>::value) {
throw FLANNException("Datatype of saved index is different than of the one to be created.");
}
if (header.h.index_type != getType()) {
throw FLANNException("Saved index type is different then the current index type.");
}
// TODO: check for distance type
}
ar & size_;
ar & veclen_;
ar & size_at_build_;
bool save_dataset;
if (Archive::is_saving::value) {
save_dataset = get_param(index_params_, "save_dataset", false);
}
ar & save_dataset;
if (save_dataset) {
if (Archive::is_loading::value) {
if (data_ptr_) {
delete[] data_ptr_;
}
data_ptr_ = new ElementType[size_*veclen_];
points_.resize(size_);
for (size_t i = 0; i<size_; ++i) {
points_[i] = data_ptr_ + i*veclen_;
}
}
for (size_t i = 0; i<size_; ++i) {
ar & serialization::make_binary_object(points_[i], veclen_*sizeof(ElementType));
}
}
else {
if (points_.size() != size_) {
throw FLANNException("Saved index does not contain the dataset and no dataset was provided.");
}
}
ar & last_id_;
ar & ids_;
ar & removed_;
if (removed_) {
ar & removed_points_;
}
ar & removed_count_;
}
/**
* @brief Perform k-nearest neighbor search
* @param[in] queries The query points for which to find the nearest neighbors
* @param[out] indices The indices of the nearest neighbors found
* @param[out] dists Distances to the nearest neighbors found
* @param[in] knn Number of nearest neighbors to return
* @param[in] params Search parameters
*/
virtual int knnSearch(const Matrix<ElementType>& queries,
Matrix<size_t>& indices,
Matrix<DistanceType>& dists,
size_t knn,
const SearchParams& params) const
{
assert(queries.cols == veclen());
assert(indices.rows >= queries.rows);
assert(dists.rows >= queries.rows);
assert(indices.cols >= knn);
assert(dists.cols >= knn);
bool use_heap;
if (params.use_heap == FLANN_Undefined) {
use_heap = (knn>KNN_HEAP_THRESHOLD) ? true : false;
}
else {
use_heap = (params.use_heap == FLANN_True) ? true : false;
}
int count = 0;
if (use_heap) {
#pragma omp parallel num_threads(params.cores)
{
KNNResultSet2<DistanceType> resultSet(knn);
#pragma omp for schedule(static) reduction(+:count)
for (int i = 0; i < (int)queries.rows; i++) {
resultSet.clear();
findNeighbors(resultSet, queries[i], params);
size_t n = std::min(resultSet.size(), knn);
resultSet.copy(indices[i], dists[i], n, params.sorted);
indices_to_ids(indices[i], indices[i], n);
count += n;
}
}
}
else {
#pragma omp parallel num_threads(params.cores)
{
KNNSimpleResultSet<DistanceType> resultSet(knn);
#pragma omp for schedule(static) reduction(+:count)
for (int i = 0; i < (int)queries.rows; i++) {
resultSet.clear();
findNeighbors(resultSet, queries[i], params);
size_t n = std::min(resultSet.size(), knn);
resultSet.copy(indices[i], dists[i], n, params.sorted);
indices_to_ids(indices[i], indices[i], n);
count += n;
}
}
}
return count;
}
/**
*
* @param queries
* @param indices
* @param dists
* @param knn
* @param params
* @return
*/
int knnSearch(const Matrix<ElementType>& queries,
Matrix<int>& indices,
Matrix<DistanceType>& dists,
size_t knn,
const SearchParams& params) const
{
flann::Matrix<size_t> indices_(new size_t[indices.rows*indices.cols], indices.rows, indices.cols);
int result = knnSearch(queries, indices_, dists, knn, params);
for (size_t i = 0; i<indices.rows; ++i) {
for (size_t j = 0; j<indices.cols; ++j) {
indices[i][j] = indices_[i][j];
}
}
delete[] indices_.ptr();
return result;
}
/**
* @brief Perform k-nearest neighbor search
* @param[in] queries The query points for which to find the nearest neighbors
* @param[out] indices The indices of the nearest neighbors found
* @param[out] dists Distances to the nearest neighbors found
* @param[in] knn Number of nearest neighbors to return
* @param[in] params Search parameters
*/
int knnSearch(const Matrix<ElementType>& queries,
std::vector< std::vector<size_t> >& indices,
std::vector<std::vector<DistanceType> >& dists,
size_t knn,
const SearchParams& params) const
{
assert(queries.cols == veclen());
bool use_heap;
if (params.use_heap == FLANN_Undefined) {
use_heap = (knn>KNN_HEAP_THRESHOLD) ? true : false;
}
else {
use_heap = (params.use_heap == FLANN_True) ? true : false;
}
if (indices.size() < queries.rows) indices.resize(queries.rows);
if (dists.size() < queries.rows) dists.resize(queries.rows);
int count = 0;
if (use_heap) {
#pragma omp parallel num_threads(params.cores)
{
KNNResultSet2<DistanceType> resultSet(knn);
#pragma omp for schedule(static) reduction(+:count)
for (int i = 0; i < (int)queries.rows; i++) {
resultSet.clear();
findNeighbors(resultSet, queries[i], params);
size_t n = std::min(resultSet.size(), knn);
indices[i].resize(n);
dists[i].resize(n);
if (n>0) {
resultSet.copy(&indices[i][0], &dists[i][0], n, params.sorted);
indices_to_ids(&indices[i][0], &indices[i][0], n);
}
count += n;
}
}
}
else {
#pragma omp parallel num_threads(params.cores)
{
KNNSimpleResultSet<DistanceType> resultSet(knn);
#pragma omp for schedule(static) reduction(+:count)
for (int i = 0; i < (int)queries.rows; i++) {
resultSet.clear();
findNeighbors(resultSet, queries[i], params);
size_t n = std::min(resultSet.size(), knn);
indices[i].resize(n);
dists[i].resize(n);
if (n>0) {
resultSet.copy(&indices[i][0], &dists[i][0], n, params.sorted);
indices_to_ids(&indices[i][0], &indices[i][0], n);
}
count += n;
}
}
}
return count;
}
/**
*
* @param queries
* @param indices
* @param dists
* @param knn
* @param params
* @return
*/
int knnSearch(const Matrix<ElementType>& queries,
std::vector< std::vector<int> >& indices,
std::vector<std::vector<DistanceType> >& dists,
size_t knn,
const SearchParams& params) const
{
std::vector<std::vector<size_t> > indices_;
int result = knnSearch(queries, indices_, dists, knn, params);
indices.resize(indices_.size());
for (size_t i = 0; i<indices_.size(); ++i) {
indices[i].assign(indices_[i].begin(), indices_[i].end());
}
return result;
}
/**
* @brief Perform radius search
* @param[in] query The query point
* @param[out] indices The indices of the neighbors found within the given radius
* @param[out] dists The distances to the nearest neighbors found
* @param[in] radius The radius used for search
* @param[in] params Search parameters
* @return Number of neighbors found
*/
int radiusSearch(const Matrix<ElementType>& queries,
Matrix<size_t>& indices,
Matrix<DistanceType>& dists,
float radius,
const SearchParams& params) const
{
assert(queries.cols == veclen());
int count = 0;
size_t num_neighbors = std::min(indices.cols, dists.cols);
int max_neighbors = params.max_neighbors;
if (max_neighbors<0) max_neighbors = num_neighbors;
else max_neighbors = std::min(max_neighbors, (int)num_neighbors);
if (max_neighbors == 0) {
#pragma omp parallel num_threads(params.cores)
{
CountRadiusResultSet<DistanceType> resultSet(radius);
#pragma omp for schedule(static) reduction(+:count)
for (int i = 0; i < (int)queries.rows; i++) {
resultSet.clear();
findNeighbors(resultSet, queries[i], params);
count += resultSet.size();
}
}
}
else {
// explicitly indicated to use unbounded radius result set
// and we know there'll be enough room for resulting indices and dists
if (params.max_neighbors<0 && (num_neighbors >= size())) {
#pragma omp parallel num_threads(params.cores)
{
RadiusResultSet<DistanceType> resultSet(radius);
#pragma omp for schedule(static) reduction(+:count)
for (int i = 0; i < (int)queries.rows; i++) {
resultSet.clear();
findNeighbors(resultSet, queries[i], params);
size_t n = resultSet.size();
count += n;
if (n>num_neighbors) n = num_neighbors;
resultSet.copy(indices[i], dists[i], n, params.sorted);
// mark the next element in the output buffers as unused
if (n<indices.cols) indices[i][n] = size_t(-1);
if (n<dists.cols) dists[i][n] = std::numeric_limits<DistanceType>::infinity();
indices_to_ids(indices[i], indices[i], n);
}
}
}
else {
// number of neighbors limited to max_neighbors
#pragma omp parallel num_threads(params.cores)
{
KNNRadiusResultSet<DistanceType> resultSet(radius, max_neighbors);
#pragma omp for schedule(static) reduction(+:count)
for (int i = 0; i < (int)queries.rows; i++) {
resultSet.clear();
findNeighbors(resultSet, queries[i], params);
size_t n = resultSet.size();
count += n;
if ((int)n>max_neighbors) n = max_neighbors;
resultSet.copy(indices[i], dists[i], n, params.sorted);
// mark the next element in the output buffers as unused
if (n<indices.cols) indices[i][n] = size_t(-1);
if (n<dists.cols) dists[i][n] = std::numeric_limits<DistanceType>::infinity();
indices_to_ids(indices[i], indices[i], n);
}
}
}
}
return count;
}
/**
*
* @param queries
* @param indices
* @param dists
* @param radius
* @param params
* @return
*/
int radiusSearch(const Matrix<ElementType>& queries,
Matrix<int>& indices,
Matrix<DistanceType>& dists,
float radius,
const SearchParams& params) const
{
flann::Matrix<size_t> indices_(new size_t[indices.rows*indices.cols], indices.rows, indices.cols);
int result = radiusSearch(queries, indices_, dists, radius, params);
for (size_t i = 0; i<indices.rows; ++i) {
for (size_t j = 0; j<indices.cols; ++j) {
indices[i][j] = indices_[i][j];
}
}
delete[] indices_.ptr();
return result;
}
/**
* @brief Perform radius search
* @param[in] query The query point
* @param[out] indices The indices of the neighbors found within the given radius
* @param[out] dists The distances to the nearest neighbors found
* @param[in] radius The radius used for search
* @param[in] params Search parameters
* @return Number of neighbors found
*/
int radiusSearch(const Matrix<ElementType>& queries,
std::vector< std::vector<size_t> >& indices,
std::vector<std::vector<DistanceType> >& dists,
float radius,
const SearchParams& params) const
{
assert(queries.cols == veclen());
int count = 0;
// just count neighbors
if (params.max_neighbors == 0) {
#pragma omp parallel num_threads(params.cores)
{
CountRadiusResultSet<DistanceType> resultSet(radius);
#pragma omp for schedule(static) reduction(+:count)
for (int i = 0; i < (int)queries.rows; i++) {
resultSet.clear();
findNeighbors(resultSet, queries[i], params);
count += resultSet.size();
}
}
}
else {
if (indices.size() < queries.rows) indices.resize(queries.rows);
if (dists.size() < queries.rows) dists.resize(queries.rows);
if (params.max_neighbors<0) {
// search for all neighbors
#pragma omp parallel num_threads(params.cores)
{
RadiusResultSet<DistanceType> resultSet(radius);
#pragma omp for schedule(static) reduction(+:count)
for (int i = 0; i < (int)queries.rows; i++) {
resultSet.clear();
findNeighbors(resultSet, queries[i], params);
size_t n = resultSet.size();
count += n;
indices[i].resize(n);
dists[i].resize(n);
if (n > 0) {
resultSet.copy(&indices[i][0], &dists[i][0], n, params.sorted);
indices_to_ids(&indices[i][0], &indices[i][0], n);
}
}
}
}
else {
// number of neighbors limited to max_neighbors
#pragma omp parallel num_threads(params.cores)
{
KNNRadiusResultSet<DistanceType> resultSet(radius, params.max_neighbors);
#pragma omp for schedule(static) reduction(+:count)
for (int i = 0; i < (int)queries.rows; i++) {
resultSet.clear();
findNeighbors(resultSet, queries[i], params);
size_t n = resultSet.size();
count += n;
if ((int)n>params.max_neighbors) n = params.max_neighbors;
indices[i].resize(n);
dists[i].resize(n);
if (n > 0) {
resultSet.copy(&indices[i][0], &dists[i][0], n, params.sorted);
indices_to_ids(&indices[i][0], &indices[i][0], n);
}
}
}
}
}
return count;
}
/**
*
* @param queries
* @param indices
* @param dists
* @param radius
* @param params
* @return
*/
int radiusSearch(const Matrix<ElementType>& queries,
std::vector< std::vector<int> >& indices,
std::vector<std::vector<DistanceType> >& dists,
float radius,
const SearchParams& params) const
{
std::vector<std::vector<size_t> > indices_;
int result = radiusSearch(queries, indices_, dists, radius, params);
indices.resize(indices_.size());
for (size_t i = 0; i<indices_.size(); ++i) {
indices[i].assign(indices_[i].begin(), indices_[i].end());
}
return result;
}
virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) const = 0;
protected:
virtual void freeIndex() = 0;
virtual void buildIndexImpl() = 0;
size_t id_to_index(size_t id)
{
if (ids_.size() == 0) {
return id;
}
size_t point_index = size_t(-1);
if (id < ids_.size() && ids_[id] == id) {
return id;
}
else {
// binary search
size_t start = 0;
size_t end = ids_.size();
while (start<end) {
size_t mid = (start + end) / 2;
if (ids_[mid] == id) {
point_index = mid;
break;
}
else if (ids_[mid]<id) {
start = mid + 1;
}
else {
end = mid;
}
}
}
return point_index;
}
void indices_to_ids(const size_t* in, size_t* out, size_t size) const
{
if (removed_) {
for (size_t i = 0; i<size; ++i) {
out[i] = ids_[in[i]];
}
}
}
void setDataset(const Matrix<ElementType>& dataset)
{
size_ = dataset.rows;
veclen_ = dataset.cols;
last_id_ = 0;
ids_.clear();
removed_points_.clear();
removed_ = false;
removed_count_ = 0;
points_.resize(size_);
for (size_t i = 0; i<size_; ++i) {
points_[i] = dataset[i];
}
}
void extendDataset(const Matrix<ElementType>& new_points)
{
size_t new_size = size_ + new_points.rows;
if (removed_) {
removed_points_.resize(new_size);
ids_.resize(new_size);
}
points_.resize(new_size);
for (size_t i = size_; i<new_size; ++i) {
points_[i] = new_points[i - size_];
if (removed_) {
ids_[i] = last_id_++;
removed_points_.reset(i);
}
}
size_ = new_size;
}
void cleanRemovedPoints()
{
if (!removed_) return;
size_t last_idx = 0;
for (size_t i = 0; i<size_; ++i) {
if (!removed_points_.test(i)) {
points_[last_idx] = points_[i];
ids_[last_idx] = ids_[i];
removed_points_.reset(last_idx);
++last_idx;
}
}
points_.resize(last_idx);
ids_.resize(last_idx);
removed_points_.resize(last_idx);
size_ = last_idx;
removed_count_ = 0;
}
void swap(NNIndex& other)
{
std::swap(distance_, other.distance_);
std::swap(last_id_, other.last_id_);
std::swap(size_, other.size_);
std::swap(size_at_build_, other.size_at_build_);
std::swap(veclen_, other.veclen_);
std::swap(index_params_, other.index_params_);
std::swap(removed_, other.removed_);
std::swap(removed_points_, other.removed_points_);
std::swap(removed_count_, other.removed_count_);
std::swap(ids_, other.ids_);
std::swap(points_, other.points_);
std::swap(data_ptr_, other.data_ptr_);
}
protected:
/**
* The distance functor
*/
Distance distance_;
/**
* Each index point has an associated ID. IDs are assigned sequentially in
* increasing order. This indicates the ID assigned to the last point added to the
* index.
*/
size_t last_id_;
/**
* Number of points in the index (and database)
*/
size_t size_;
/**
* Number of features in the dataset when the index was last built.
*/
size_t size_at_build_;
/**
* Size of one point in the index (and database)
*/
size_t veclen_;
/**
* Parameters of the index.
*/
IndexParams index_params_;
/**
* Flag indicating if at least a point was removed from the index
*/
bool removed_;
/**
* Array used to mark points removed from the index
*/
// DynamicBitset removed_points_;
/**
* Number of points removed from the index
*/
size_t removed_count_;
/**
* Array of point IDs, returned by nearest-neighbour operations
*/
std::vector<size_t> ids_;
/**
* Point data
*/
std::vector<ElementType*> points_;
/**
* Pointer to dataset memory if allocated by this index, otherwise NULL
*/
ElementType* data_ptr_;
#define USING_BASECLASS_SYMBOLS \
using NNIndex<Distance>::distance_; \
using NNIndex<Distance>::size_; \
using NNIndex<Distance>::size_at_build_; \
using NNIndex<Distance>::veclen_; \
using NNIndex<Distance>::index_params_; \
using NNIndex<Distance>::removed_points_; \
using NNIndex<Distance>::ids_; \
using NNIndex<Distance>::removed_; \
using NNIndex<Distance>::points_; \
using NNIndex<Distance>::extendDataset; \
using NNIndex<Distance>::setDataset; \
using NNIndex<Distance>::cleanRemovedPoints; \
using NNIndex<Distance>::indices_to_ids;
};
//move from here to within class nnindex
}
#endif //FLANN_NNINDEX_H