-
Notifications
You must be signed in to change notification settings - Fork 96
/
sod_metric.py
582 lines (502 loc) · 21.7 KB
/
sod_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# -*- coding: utf-8 -*-
import numpy as np
from scipy.ndimage import convolve
from scipy.ndimage import distance_transform_edt as bwdist
import cv2
_EPS = np.spacing(1) # the different implementation of epsilon (extreme min value) between numpy and matlab
_TYPE = np.float64
def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple:
"""
A numpy-based function for preparing ``pred`` and ``gt``.
- for ``pred``, it looks like ``mapminmax(im2double(...))`` of matlab;
- ``gt`` will be binarized by 128.
:param pred: prediction
:param gt: mask
:return: pred, gt
"""
gt = gt > 128
# im2double, mapminmax
pred = pred / 255
if pred.max() != pred.min():
pred = (pred - pred.min()) / (pred.max() - pred.min())
return pred, gt
def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float:
"""
Return an adaptive threshold, which is equal to twice the mean of ``matrix``.
:param matrix: a data array
:param max_value: the upper limit of the threshold
:return: min(2 * matrix.mean(), max_value)
"""
return min(2 * matrix.mean(), max_value)
class Fmeasure(object):
def __init__(self, beta: float = 1.0):
"""
F-measure for SOD.
::
@inproceedings{Fmeasure,
title={Frequency-tuned salient region detection},
author={Achanta, Radhakrishna and Hemami, Sheila and Estrada, Francisco and S{\"u}sstrunk, Sabine},
booktitle=CVPR,
number={CONF},
pages={1597--1604},
year={2009}
}
:param beta: the weight of the precision
"""
self.beta = beta
self.precisions = []
self.recalls = []
self.adaptive_fms = []
self.changeable_fms = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt)
self.adaptive_fms.append(adaptive_fm)
precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt)
self.precisions.append(precisions)
self.recalls.append(recalls)
self.changeable_fms.append(changeable_fms)
def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the adaptive F-measure.
:return: adaptive_fm
"""
# ``np.count_nonzero`` is faster and better
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
binary_predcition = pred >= adaptive_threshold
area_intersection = binary_predcition[gt].sum()
if area_intersection == 0:
adaptive_fm = 0
else:
pre = area_intersection / np.count_nonzero(binary_predcition)
rec = area_intersection / np.count_nonzero(gt)
adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec)
return adaptive_fm
def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple:
"""
Calculate the corresponding precision and recall when the threshold changes from 0 to 255.
These precisions and recalls can be used to obtain the mean F-measure, maximum F-measure,
precision-recall curve and F-measure-threshold curve.
For convenience, ``changeable_fms`` is provided here, which can be used directly to obtain
the mean F-measure, maximum F-measure and F-measure-threshold curve.
:return: precisions, recalls, changeable_fms
"""
# 1. 获取预测结果在真值前背景区域中的直方图
pred = (pred * 255).astype(np.uint8)
bins = np.linspace(0, 256, 257)
fg_hist, _ = np.histogram(pred[gt], bins=bins) # 最后一个bin为[255, 256]
bg_hist, _ = np.histogram(pred[~gt], bins=bins)
# 2. 使用累积直方图(Cumulative Histogram)获得对应真值前背景中大于不同阈值的像素数量
# 这里使用累加(cumsum)就是为了一次性得出 >=不同阈值 的像素数量, 这里仅计算了前景区域
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
# 3. 使用不同阈值的结果计算对应的precision和recall
# p和r的计算的真值是pred==1>==1,二者仅有分母不同,分母前者是pred==1,后者是gt==1
# 为了同时计算不同阈值的结果,这里使用hsitogram&flip&cumsum 获得了不同各自的前景像素数量
TPs = fg_w_thrs
Ps = fg_w_thrs + bg_w_thrs
# 为防止除0,这里针对除0的情况分析后直接对于0分母设为1,因为此时分子必为0
Ps[Ps == 0] = 1
T = max(np.count_nonzero(gt), 1)
# TODO: T=0 或者 特定阈值下fg_w_thrs=0或者bg_w_thrs=0,这些都会包含在TPs[i]=0的情况中,
# 但是这里使用TPs不便于处理列表
precisions = TPs / Ps
recalls = TPs / T
numerator = (1 + self.beta) * precisions * recalls
denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls)
changeable_fms = numerator / denominator
return precisions, recalls, changeable_fms
def get_results(self) -> dict:
"""
Return the results about F-measure.
:return: dict(fm=dict(adp=adaptive_fm, curve=changeable_fm), pr=dict(p=precision, r=recall))
"""
adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE))
changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0)
precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) # N, 256
recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) # N, 256
return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm), pr=dict(p=precision, r=recall))
class MAE(object):
def __init__(self):
"""
MAE(mean absolute error) for SOD.
::
@inproceedings{MAE,
title={Saliency filters: Contrast based filtering for salient region detection},
author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander},
booktitle=CVPR,
pages={733--740},
year={2012}
}
"""
self.maes = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
mae = self.cal_mae(pred, gt)
# mae = np.sum(cv2.absdiff(gt.astype(float), pred.astype(float))) / (pred.shape[1] * pred.shape[0])
self.maes.append(mae)
def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
"""
Calculate the mean absolute error.
:return: mae
"""
mae = np.mean(np.abs(pred - gt))
return mae
def get_results(self) -> dict:
"""
Return the results about MAE.
:return: dict(mae=mae)
"""
mae = np.mean(np.array(self.maes, _TYPE))
return dict(mae=mae)
class Smeasure(object):
def __init__(self, alpha: float = 0.5):
"""
S-measure(Structure-measure) of SOD.
::
@inproceedings{Smeasure,
title={Structure-measure: A new way to eval foreground maps},
author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali},
booktitle=ICCV,
pages={4548--4557},
year={2017}
}
:param alpha: the weight for balancing the object score and the region score
"""
self.sms = []
self.alpha = alpha
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
sm = self.cal_sm(pred, gt)
self.sms.append(sm)
def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the S-measure.
:return: s-measure
"""
y = np.mean(gt)
if y == 0:
sm = 1 - np.mean(pred)
elif y == 1:
sm = np.mean(pred)
else:
sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt)
sm = max(0, sm)
return sm
def object(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the object score.
"""
fg = pred * gt
bg = (1 - pred) * (1 - gt)
u = np.mean(gt)
object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt)
return object_score
def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float:
x = np.mean(pred[gt == 1])
sigma_x = np.std(pred[gt == 1], ddof=1)
score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS)
return score
def region(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the region score.
"""
x, y = self.centroid(gt)
part_info = self.divide_with_xy(pred, gt, x, y)
w1, w2, w3, w4 = part_info["weight"]
# assert np.isclose(w1 + w2 + w3 + w4, 1), (w1 + w2 + w3 + w4, pred.mean(), gt.mean())
pred1, pred2, pred3, pred4 = part_info["pred"]
gt1, gt2, gt3, gt4 = part_info["gt"]
score1 = self.ssim(pred1, gt1)
score2 = self.ssim(pred2, gt2)
score3 = self.ssim(pred3, gt3)
score4 = self.ssim(pred4, gt4)
return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4
def centroid(self, matrix: np.ndarray) -> tuple:
"""
To ensure consistency with the matlab code, one is added to the centroid coordinate,
so there is no need to use the redundant addition operation when dividing the region later,
because the sequence generated by ``1:X`` in matlab will contain ``X``.
:param matrix: a bool data array
:return: the centroid coordinate
"""
h, w = matrix.shape
area_object = np.count_nonzero(matrix)
if area_object == 0:
x = np.round(w / 2)
y = np.round(h / 2)
else:
# More details can be found at: https://www.yuque.com/lart/blog/gpbigm
y, x = np.argwhere(matrix).mean(axis=0).round()
return int(x) + 1, int(y) + 1
def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x: int, y: int) -> dict:
"""
Use (x,y) to divide the ``pred`` and the ``gt`` into four submatrices, respectively.
"""
h, w = gt.shape
area = h * w
gt_LT = gt[0:y, 0:x]
gt_RT = gt[0:y, x:w]
gt_LB = gt[y:h, 0:x]
gt_RB = gt[y:h, x:w]
pred_LT = pred[0:y, 0:x]
pred_RT = pred[0:y, x:w]
pred_LB = pred[y:h, 0:x]
pred_RB = pred[y:h, x:w]
w1 = x * y / area
w2 = y * (w - x) / area
w3 = (h - y) * x / area
w4 = 1 - w1 - w2 - w3
return dict(
gt=(gt_LT, gt_RT, gt_LB, gt_RB),
pred=(pred_LT, pred_RT, pred_LB, pred_RB),
weight=(w1, w2, w3, w4),
)
def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the ssim score.
"""
h, w = pred.shape
N = h * w
x = np.mean(pred)
y = np.mean(gt)
sigma_x = np.sum((pred - x) ** 2) / (N - 1)
sigma_y = np.sum((gt - y) ** 2) / (N - 1)
sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1)
alpha = 4 * x * y * sigma_xy
beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y)
if alpha != 0:
score = alpha / (beta + _EPS)
elif alpha == 0 and beta == 0:
score = 1
else:
score = 0
return score
def get_results(self) -> dict:
"""
Return the results about S-measure.
:return: dict(sm=sm)
"""
sm = np.mean(np.array(self.sms, dtype=_TYPE))
return dict(sm=sm)
class Emeasure(object):
def __init__(self):
"""
E-measure(Enhanced-alignment Measure) for SOD.
More details about the implementation can be found in https://www.yuque.com/lart/blog/lwgt38
::
@inproceedings{Emeasure,
title="Enhanced-alignment Measure for Binary Foreground Map Evaluation",
author="Deng-Ping {Fan} and Cheng {Gong} and Yang {Cao} and Bo {Ren} and Ming-Ming {Cheng} and Ali {Borji}",
booktitle=IJCAI,
pages="698--704",
year={2018}
}
"""
self.adaptive_ems = []
self.changeable_ems = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
self.gt_fg_numel = np.count_nonzero(gt)
self.gt_size = gt.shape[0] * gt.shape[1]
changeable_ems = self.cal_changeable_em(pred, gt)
self.changeable_ems.append(changeable_ems)
adaptive_em = self.cal_adaptive_em(pred, gt)
self.adaptive_ems.append(adaptive_em)
def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the adaptive E-measure.
:return: adaptive_em
"""
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold)
return adaptive_em
def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
"""
Calculate the changeable E-measure, which can be used to obtain the mean E-measure,
the maximum E-measure and the E-measure-threshold curve.
:return: changeable_ems
"""
changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt)
return changeable_ems
def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float:
"""
Calculate the E-measure corresponding to the specific threshold.
Variable naming rules within the function:
``[pred attribute(foreground fg, background bg)]_[gt attribute(foreground fg, background bg)]_[meaning]``
If only ``pred`` or ``gt`` is considered, another corresponding attribute location is replaced with '``_``'.
"""
binarized_pred = pred >= threshold
fg_fg_numel = np.count_nonzero(binarized_pred & gt)
fg_bg_numel = np.count_nonzero(binarized_pred & ~gt)
fg___numel = fg_fg_numel + fg_bg_numel
bg___numel = self.gt_size - fg___numel
if self.gt_fg_numel == 0:
enhanced_matrix_sum = bg___numel
elif self.gt_fg_numel == self.gt_size:
enhanced_matrix_sum = fg___numel
else:
parts_numel, combinations = self.generate_parts_numel_combinations(
fg_fg_numel=fg_fg_numel,
fg_bg_numel=fg_bg_numel,
pred_fg_numel=fg___numel,
pred_bg_numel=bg___numel,
)
results_parts = []
for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)):
align_matrix_value = (
2
* (combination[0] * combination[1])
/ (combination[0] ** 2 + combination[1] ** 2 + _EPS)
)
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
results_parts.append(enhanced_matrix_value * part_numel)
enhanced_matrix_sum = sum(results_parts)
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
return em
def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
"""
Calculate the E-measure corresponding to the threshold that varies from 0 to 255..
Variable naming rules within the function:
``[pred attribute(foreground fg, background bg)]_[gt attribute(foreground fg, background bg)]_[meaning]``
If only ``pred`` or ``gt`` is considered, another corresponding attribute location is replaced with '``_``'.
"""
pred = (pred * 255).astype(np.uint8)
bins = np.linspace(0, 256, 257)
fg_fg_hist, _ = np.histogram(pred[gt], bins=bins)
fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins)
fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0)
fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0)
fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs
bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs
if self.gt_fg_numel == 0:
enhanced_matrix_sum = bg___numel_w_thrs
elif self.gt_fg_numel == self.gt_size:
enhanced_matrix_sum = fg___numel_w_thrs
else:
parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations(
fg_fg_numel=fg_fg_numel_w_thrs,
fg_bg_numel=fg_bg_numel_w_thrs,
pred_fg_numel=fg___numel_w_thrs,
pred_bg_numel=bg___numel_w_thrs,
)
results_parts = np.empty(shape=(4, 256), dtype=np.float64)
for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)):
align_matrix_value = (
2
* (combination[0] * combination[1])
/ (combination[0] ** 2 + combination[1] ** 2 + _EPS)
)
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
results_parts[i] = enhanced_matrix_value * part_numel
enhanced_matrix_sum = results_parts.sum(axis=0)
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
return em
def generate_parts_numel_combinations(
self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel
):
bg_fg_numel = self.gt_fg_numel - fg_fg_numel
bg_bg_numel = pred_bg_numel - bg_fg_numel
parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel]
mean_pred_value = pred_fg_numel / self.gt_size
mean_gt_value = self.gt_fg_numel / self.gt_size
demeaned_pred_fg_value = 1 - mean_pred_value
demeaned_pred_bg_value = 0 - mean_pred_value
demeaned_gt_fg_value = 1 - mean_gt_value
demeaned_gt_bg_value = 0 - mean_gt_value
combinations = [
(demeaned_pred_fg_value, demeaned_gt_fg_value),
(demeaned_pred_fg_value, demeaned_gt_bg_value),
(demeaned_pred_bg_value, demeaned_gt_fg_value),
(demeaned_pred_bg_value, demeaned_gt_bg_value),
]
return parts_numel, combinations
def get_results(self) -> dict:
"""
Return the results about E-measure.
:return: dict(em=dict(adp=adaptive_em, curve=changeable_em))
"""
adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE))
changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0)
return dict(em=dict(adp=adaptive_em, curve=changeable_em))
class WeightedFmeasure(object):
def __init__(self, beta: float = 0.3):
"""
Weighted F-measure for SOD.
::
@inproceedings{wFmeasure,
title={How to eval foreground maps?},
author={Margolin, Ran and Zelnik-Manor, Lihi and Tal, Ayellet},
booktitle=CVPR,
pages={248--255},
year={2014}
}
:param beta: the weight of the precision
"""
self.beta = beta
self.weighted_fms = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
if np.all(~gt):
wfm = 0
else:
wfm = self.cal_wfm(pred, gt)
self.weighted_fms.append(wfm)
def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float:
"""
Calculate the weighted F-measure.
"""
# [Dst,IDXT] = bwdist(dGT);
Dst, Idxt = bwdist(gt == 0, return_indices=True)
# %Pixel dependency
# E = abs(FG-dGT);
E = np.abs(pred - gt)
# Et = E;
# Et(~GT)=Et(IDXT(~GT)); %To deal correctly with the edges of the foreground region
Et = np.copy(E)
Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]]
# K = fspecial('gaussian',7,5);
# EA = imfilter(Et,K);
K = self.matlab_style_gauss2D((7, 7), sigma=5)
EA = convolve(Et, weights=K, mode="constant", cval=0)
# MIN_E_EA = E;
# MIN_E_EA(GT & EA<E) = EA(GT & EA<E);
MIN_E_EA = np.where(gt & (EA < E), EA, E)
# %Pixel importance
# B = ones(size(GT));
# B(~GT) = 2-1*exp(log(1-0.5)/5.*Dst(~GT));
# Ew = MIN_E_EA.*B;
B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt))
Ew = MIN_E_EA * B
# TPw = sum(dGT(:)) - sum(sum(Ew(GT)));
# FPw = sum(sum(Ew(~GT)));
TPw = np.sum(gt) - np.sum(Ew[gt == 1])
FPw = np.sum(Ew[gt == 0])
# R = 1- mean2(Ew(GT)); %Weighed Recall
# P = TPw./(eps+TPw+FPw); %Weighted Precision
# 注意这里使用mask索引矩阵的时候不可使用Ew[gt],这实际上仅在索引Ew的0维度
R = 1 - np.mean(Ew[gt == 1])
P = TPw / (TPw + FPw + _EPS)
# % Q = (1+Beta^2)*(R*P)./(eps+R+(Beta.*P));
Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS)
return Q
def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray:
"""
2D gaussian mask - should give the same result as MATLAB's
fspecial('gaussian',[shape],[sigma])
"""
m, n = [(ss - 1) / 2 for ss in shape]
y, x = np.ogrid[-m : m + 1, -n : n + 1]
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
def get_results(self) -> dict:
"""
Return the results about weighted F-measure.
:return: dict(wfm=weighted_fm)
"""
weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE))
return dict(wfm=weighted_fm)