-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
97 lines (79 loc) · 4.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import yaml
from src.models import *
from src.dataset import DataModule
from src.trainers import PhoBERTModel, FastTextLSTMModel
from lightning.pytorch import Trainer, seed_everything
from lightning.pytorch.callbacks import ModelCheckpoint, EarlyStopping
from lightning.pytorch.loggers import TensorBoardLogger
def load_data(path_to_yaml_file:str):
if not os.path.exists(path_to_yaml_file):
print(f"Can't find {path_to_yaml_file}")
return
with open(path_to_yaml_file) as f:
data_config = yaml.safe_load(f)
dm = DataModule(root_data_dir=data_config['root_data_dir'],
model_type=data_config['model_type'],
batch_size=data_config['batch_size'],
num_workers=data_config['num_workers'],
fasttext_embedding=data_config['fasttext_embedding'])
return dm
def load_model(path_to_yaml_file:str, loss_weight=None):
if not os.path.exists(path_to_yaml_file):
print(f"Can't find {path_to_yaml_file}")
return
with open(path_to_yaml_file) as f:
model_config = yaml.safe_load(f)
name = model_config['model_name']
# model configuration
if name == "BERT-FF-BASE":
model = PhoBertFeedForward_base(from_pretrained=model_config['from_pretrained'],
freeze_backbone=model_config['freeze_backbone'],
drop_out=model_config['drop_out'],
out_channels=model_config['out_channels'])
elif name == "BERT-FF-LARGE":
model = PhoBertFeedForward_large(from_pretrained=model_config['from_pretrained'],
freeze_backbone=model_config['freeze_backbone'],
drop_out=model_config['drop_out'],
out_channels=model_config['out_channels'])
elif name == "BERT-LSTM-BASE":
model = PhoBERTLSTM_base(from_pretrained=model_config['from_pretrained'],
freeze_backbone=model_config['freeze_backbone'],
drop_out=model_config['drop_out'],
out_channels=model_config['out_channels'])
elif name == "BERT-LSTM-LARGE":
model = PhoBERTLSTM_large(from_pretrained=model_config['from_pretrained'],
freeze_backbone=model_config['freeze_backbone'],
drop_out=model_config['drop_out'],
out_channels=model_config['out_channels'])
elif name == "FASTTEXT-LSTM":
pass
else:
raise ValueError(f"Not support {name}")
# system configuration
if name.startswith("FASTTEXT"):
system = FastTextLSTMModel(dropout=model_config['drop_out'],
out_channels=model_config['out_channels'],
hidden_size=model_config['vector_size'],
loss_weight=loss_weight)
else:
system = PhoBERTModel(model=model,
out_channels=model_config['out_channels'],
loss_weight=loss_weight)
return system
def load_trainer(path_to_yaml_file:str):
if not os.path.exists(path_to_yaml_file):
print(f"Can't find {path_to_yaml_file}")
return
with open(path_to_yaml_file) as f:
trainer_config = yaml.safe_load(f)
checkpoint_callback = ModelCheckpoint(dirpath=trainer_config['ckpt_dir'], monitor="val_loss", save_top_k=3, mode="min")
early_stopping = EarlyStopping(monitor="val_loss", mode="min")
logger = TensorBoardLogger(save_dir=trainer_config['tensorboard']['dir'],
name=trainer_config['tensorboard']['name'],
version=trainer_config['tensorboard']['version'])
trainer = Trainer(accelerator=trainer_config['accelarator'], check_val_every_n_epoch=trainer_config['val_each_epoch'],
gradient_clip_val=1.0,max_epochs=trainer_config['max_epochs'],
enable_checkpointing=True, deterministic=True, default_root_dir=trainer_config['ckpt_dir'],
callbacks=[checkpoint_callback, early_stopping], logger=logger, accumulate_grad_batches=4,log_every_n_steps=1)
return trainer