forked from googleprojectzero/fuzzilli
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStatistics.swift
179 lines (148 loc) · 7.21 KB
/
Statistics.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Foundation
public class Statistics: Module {
/// The data just for this instance.
private var ownData = Fuzzilli_Protobuf_Statistics()
/// Data required to compute executions per second.
private var currentExecs = 0.0
private var lastEpsUpdate = Date()
private var lastExecsPerSecond = 0.0
/// Data required to compute the fuzzer overhead (i.e. the fraction of the total time that is not spent executing generated programs in the target engine).
/// This includes time required for worker synchronization, to mutate/generate a program, to lift it, to restart the target process after crashes/timeouts, etc.
private var overheadAvg = MovingAverage(n: 1000)
private var lastPreExecDate = Date()
private var lastExecDate = Date()
/// Moving average to keep track of average program size.
private var programSizeAvg = MovingAverage(n: 1000)
/// All data from connected workers.
private var workers = [UUID: Fuzzilli_Protobuf_Statistics]()
/// The IDs of workers that are currently inactive.
private var inactiveWorkers = Set<UUID>()
public init() {}
/// Computes and returns the statistical data for this instance and all connected workers.
public func compute() -> Fuzzilli_Protobuf_Statistics {
assert(workers.count - inactiveWorkers.count == ownData.numWorkers)
// Compute global statistics data
var data = ownData
for (id, workerData) in workers {
data.totalSamples += workerData.totalSamples
data.validSamples += workerData.validSamples
data.timedOutSamples += workerData.timedOutSamples
data.totalExecs += workerData.totalExecs
data.typeCollectionAttempts += workerData.typeCollectionAttempts
data.typeCollectionFailures += workerData.typeCollectionFailures
data.typeCollectionTimeouts += workerData.typeCollectionTimeouts
// Interesting samples and crashes are already synchronized
if !self.inactiveWorkers.contains(id) {
data.numWorkers += workerData.numWorkers
data.avgProgramSize += workerData.avgProgramSize
data.execsPerSecond += workerData.execsPerSecond
data.fuzzerOverhead += workerData.fuzzerOverhead
}
}
data.avgProgramSize /= Double(ownData.numWorkers + 1)
data.fuzzerOverhead /= Double(ownData.numWorkers + 1)
return data
}
public func initialize(with fuzzer: Fuzzer) {
fuzzer.registerEventListener(for: fuzzer.events.CrashFound) { _ in
self.ownData.crashingSamples += 1
}
fuzzer.registerEventListener(for: fuzzer.events.TimeOutFound) { _ in
self.ownData.timedOutSamples += 1
}
fuzzer.registerEventListener(for: fuzzer.events.ValidProgramFound) { _ in
self.ownData.validSamples += 1
}
fuzzer.registerEventListener(for: fuzzer.events.PostExecute) { exec in
self.ownData.totalExecs += 1
self.currentExecs += 1
let now = Date()
let totalTime = now.timeIntervalSince(self.lastExecDate)
self.lastExecDate = now
let overhead = 1.0 - (exec.execTime / totalTime)
self.overheadAvg.add(overhead)
self.ownData.fuzzerOverhead = self.overheadAvg.currentValue
}
fuzzer.registerEventListener(for: fuzzer.events.InterestingProgramFound) { ev in
self.ownData.interestingSamples += 1
self.ownData.coverage = fuzzer.evaluator.currentScore
if ev.program.typeCollectionStatus == .success {
self.ownData.interestingSamplesWithTypes += 1
}
guard ev.newTypeCollectionRun else { return }
if ev.program.typeCollectionStatus != .notAttempted {
self.ownData.typeCollectionAttempts += 1
}
if ev.program.typeCollectionStatus == .timeout {
self.ownData.typeCollectionTimeouts += 1
} else if ev.program.typeCollectionStatus == .error {
self.ownData.typeCollectionFailures += 1
}
}
fuzzer.registerEventListener(for: fuzzer.events.ProgramGenerated) { program in
self.ownData.totalSamples += 1
self.programSizeAvg.add(program.size)
self.ownData.avgProgramSize = self.programSizeAvg.currentValue
}
fuzzer.registerEventListener(for: fuzzer.events.WorkerConnected) { id in
self.ownData.numWorkers += 1
self.workers[id] = Fuzzilli_Protobuf_Statistics()
self.inactiveWorkers.remove(id)
}
fuzzer.registerEventListener(for: fuzzer.events.WorkerDisconnected) { id in
self.ownData.numWorkers -= 1
self.inactiveWorkers.insert(id)
}
fuzzer.timers.scheduleTask(every: 30 * Seconds) {
let now = Date()
let interval = Double(now.timeIntervalSince(self.lastEpsUpdate))
guard interval >= 1.0 else {
return // This can happen due to delays in queue processing
}
let execsPerSecond = self.currentExecs / interval
self.ownData.execsPerSecond += execsPerSecond - self.lastExecsPerSecond
self.lastExecsPerSecond = execsPerSecond
self.lastEpsUpdate = now
self.currentExecs = 0.0
}
}
/// Import statistics data from a worker.
public func importData(_ stats: Fuzzilli_Protobuf_Statistics, from worker: UUID) {
workers[worker] = stats
}
}
extension Fuzzilli_Protobuf_Statistics {
/// The ratio of valid samples to produced samples.
public var successRate: Double {
return Double(validSamples) / Double(totalSamples)
}
/// The ratio of timed-out samples to produced samples.
public var timeoutRate: Double {
return Double(timedOutSamples) / Double(totalSamples)
}
/// The ratio of time-outs and total number of runtime type collection runs.
public var typeCollectionTimeoutRate: Double {
return Double(typeCollectionTimeouts) / Double(typeCollectionAttempts)
}
/// The ratio of failures and total number of runtime type collection runs.
public var typeCollectionFailureRate: Double {
return Double(typeCollectionFailures) / Double(typeCollectionAttempts)
}
/// The ratio of interesting samples with tuntime types information and total number of interesting samples.
public var interestingSamplesWithTypesRate: Double {
return Double(interestingSamplesWithTypes) / Double(interestingSamples)
}
}