-
Notifications
You must be signed in to change notification settings - Fork 0
/
fake_job_detection.py
349 lines (179 loc) · 5.4 KB
/
fake_job_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
#!/usr/bin/env python
# coding: utf-8
# In[1]:
get_ipython().system('pip install wordcloud')
# In[2]:
get_ipython().system('pip install -U spacy')
# In[3]:
import re
import string
import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.base import TransformerMixin
from sklearn.metrics import accuracy_score, plot_confusion_matrix, classification_report, confusion_matrix
from wordcloud import WordCloud
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
from spacy.lang.en import English
# In[4]:
df=pd.read_csv('fake_job_postings.csv')
# In[5]:
df.head()
# In[6]:
df.shape
# In[7]:
df.isnull().sum()
# In[8]:
columns = ['job_id', 'telecommuting', 'has_company_logo', 'has_questions', 'salary_range', 'employment_type']
for colu in columns:
del df[colu]
# In[9]:
df.head()
# In[10]:
df.fillna('', inplace=True)
# In[11]:
plt.figure(figsize=(15,5))
sns.countplot(y='fraudulent', data=df)
plt.show()
# In[12]:
df.groupby('fraudulent')['fraudulent'].count()
# In[13]:
exp = dict(df.required_experience.value_counts())
del exp['']
# In[14]:
exp
# In[15]:
plt.figure(figsize=(10,5))
sns.set_theme(style='whitegrid')
plt.bar(exp.keys(), exp.values())
plt.title('No. of jobs with Experience', size=20)
plt.xlabel('Experience', size=10)
plt.ylabel('No. of jobs', size=10)
plt.xticks(rotation=30)
plt.show()
# In[16]:
def split(location):
l = location.split(',')
return l[0]
df['country'] = df.location.apply(split)
# In[17]:
df.head()
# In[18]:
countr = dict(df.country.value_counts()[:14])
del countr['']
countr
# In[19]:
plt.figure(figsize=(8,6))
plt.title('Country-wise Job Posting',size=20)
plt.bar(countr.keys(), countr.values())
plt.ylabel('No. of jobs', size=10)
plt.xlabel('Countries', size=10)
# In[20]:
edu = dict(df.required_education.value_counts()[:7])
del edu['']
edu
# In[21]:
plt.figure(figsize=(15,6))
plt.title('Job postings based on Education', size=20)
plt.bar(edu.keys(), edu.values())
plt.ylabel('No. of Jobs', size=10)
plt.xlabel('Education', size=10)
# In[22]:
print(df[df.fraudulent==0].title.value_counts()[:10])
# In[23]:
print(df[df.fraudulent==1].title.value_counts()[:10])
# In[24]:
df['text']=df['title']+' '+df['company_profile']+' '+df['description']+' '+df['requirements']+' '+df['benefits']
del df['title']
del df['location']
del df['department']
del df['company_profile']
del df['description']
del df['requirements']
del df['benefits']
del df['required_experience']
del df['required_education']
del df['industry']
del df['function']
del df['country']
# In[25]:
df.head()
# In[26]:
fraudjobs_text = df[df.fraudulent==1].text
realjobs_text = df[df.fraudulent==0].text
# In[27]:
STOPWORDS = spacy.lang.en.stop_words.STOP_WORDS
plt.figure(figsize=(16,14))
wc = WordCloud(min_font_size = 3, max_words = 3000, width = 1500, height = 800, stopwords= STOPWORDS).generate(str(" ".join(fraudjobs_text)))
plt.imshow(wc, interpolation = 'bilinear')
# In[28]:
STOPWORDS = spacy.lang.en.stop_words.STOP_WORDS
plt.figure(figsize=(16,14))
wc = WordCloud(min_font_size = 3, max_words = 3000, width = 1500, height = 800, stopwords= STOPWORDS).generate(str(" ".join(realjobs_text)))
plt.imshow(wc, interpolation = 'bilinear')
# In[29]:
get_ipython().system('pip install spacy && python -m spacy download en')
# In[30]:
punctuations = string.punctuation
nlp = spacy.load("en_core_web_sm")
stop_words = spacy.lang.en.stop_words.STOP_WORDS
parser = English()
def spacy_tokenizer(sentence):
mytokens = parser(sentence)
mytokens = [word.lemma_.lower().strip() if word.lemma_ != "-PRON" else word.lower_ for word in mytokens]
mytokens = [ word for word in mytokens if word not in stop_words and word not in punctuations ]
return mytokens
# Custom transformer using spacy
class predictors(TransformerMixin):
def transform(self, X, **transform_params):
#Cleaning text
return [clean_text(text) for text in X]
def fit(self, X, y=None, **fit_params):
return self
def get_params(self, deep=True):
return {}
# Basic function to clean the text
def clean_text(text):
# Removing spaces and converting text to lowercase
return text.strip().lower()
# In[31]:
df['text'] = df['text'].apply(clean_text)
# In[32]:
cv = TfidfVectorizer(max_features = 100)
x = cv.fit_transform(df['text'])
df1 = pd.DataFrame(x.toarray(), columns = cv.get_feature_names())
df.drop(['text'], axis=1, inplace=True)
main_df = pd.concat([df1,df], axis=1)
# In[33]:
main_df.head()
#
# In[36]:
Y = main_df.iloc[:, -1]
X = main_df.iloc[:, :-1]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.3)
print(X_train.shape)
print(Y_train.shape)
print(X_test.shape)
print(Y_test.shape)
# In[38]:
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_jobs=3,oob_score=True,n_estimators=100,criterion="entropy")
model = rfc.fit(X_train,Y_train)
# In[39]:
print(X_test)
# In[40]:
pred = rfc.predict(X_test)
score = accuracy_score(Y_test, pred)
score
# In[41]:
print('Classification_Report\n')
print(classification_report(Y_test, pred))
print('Confusion Matrix\n')
print(confusion_matrix(Y_test, pred))
# In[ ]: