-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments-post-processing.py
301 lines (259 loc) · 13.9 KB
/
experiments-post-processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#!/usr/bin/python3
import json
import logging
import sys
import matplotlib.pyplot as plt
import pandas as pd
INTERVAL = 0.1 # in secs
REMOVE_FROM_SOURCE_PATH = False
logger = logging.getLogger("TIF-Swap-PP")
handler = logging.StreamHandler(sys.stdout)
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
KBits = 10 ** 3
Mbits = 10 ** 6
BitsUnit = Mbits
experiment_proto = {}
#### NEW DATA FORMAT
MODES = {
"-fast-reconfig": {"iterations" : 10, "export_interval": 1},
"-hitless": {"iterations" : 10, "export_interval": 1}
}
P4CODE = [
"pronarepeater",
"tif"
]
experiment_data_source_path = "experiment_data/PAPER/"
plt.rcParams["figure.autolayout"] = True
def create_connection_line(log_filename, mode, p4code="", iterations=None):
"""
Collect all needed data for the evaluation of one iPerf run.
"""
bps = []
retransmits = []
protocol = None
target_bitrate = 0.0
target_ip = ""
if iterations == None:
with open(experiment_data_source_path + log_filename.format(p4code, mode), "r") as f:
iperf_log = json.load(f)
for key, object in iperf_log.items():
if "start" == key:
if "test_start" in object.keys():
# FIXME: This should be impossible @ experiments!
continue
protocol = object["test_start"]["protocol"]
target_ip = object["connected"][0]["remote_host"]
if protocol == "TCP":
if target_bitrate in object.keys():
target_bitrate = object["target_bitrate"]
else:
target_bitrate = None
elif "intervals" == key:
for interval in object:
bps.append(interval["streams"][0]["bits_per_second"] / BitsUnit)
if protocol == "TCP":
retransmits.append(interval["streams"][0]["retransmits"])
else:
experiment_data = {}
bps_list = []
retransmits_list = []
for i in range(1, iterations + 1):
logger.debug("Processing iteration {} as file {}...".format(i, log_filename.format(p4code, i, mode)))
with open(experiment_data_source_path + log_filename.format(p4code, i, mode), "r") as f:
iperf_log = json.load(f)
for key, object in iperf_log.items():
if "start" == key:
if "test_start" not in object.keys():
continue
protocol = object["test_start"]["protocol"]
target_ip = object["connected"][0]["remote_host"]
if protocol == "TCP":
if "target_bitrate" in object.keys():
target_bitrate = object["target_bitrate"]
else:
target_bitrate = None
elif "intervals" == key:
for interval in object:
bps.append(interval["streams"][0]["bits_per_second"] / BitsUnit)
if protocol == "TCP":
retransmits.append(interval["streams"][0]["retransmits"])
experiment_data.update({i : {"bps": bps, "protocol": protocol, "target_ip": target_ip, "target_bitrate": target_bitrate, "retransmits": retransmits}})
bps_list.append(pd.Series(experiment_data[i]["bps"]))
if experiment_data[i]["protocol"] == "TCP":
retransmits_list.append(pd.Series(experiment_data[i]["retransmits"]))
bps.clear()
retransmits.clear()
bps_df = pd.DataFrame(bps_list)
if experiment_data[i]["protocol"] == "TCP":
retransmits_df = pd.DataFrame(retransmits_list)
retransmits = retransmits_df.mean()
bps = bps_df.mean()
bps_max = bps.max()
logger.info("Max Bps (Proto: " + protocol + ", Code: " + p4code + "): " + str(bps_max))
experiment_proto.update({mode : protocol})
return bps, retransmits, target_ip, protocol, target_bitrate
def plot_iperf_bitrate_in_one_files(p4code, bps_tcp, bps_udp, protocol_t42, protocol_t43, bps_tcp_h = None, bps_udp_h = None, protocol_t42_h = None, protocol_t43_h = None):
fig = plt.figure()
ax = fig.add_subplot(211)
ax.set_ylabel("Throughput in MBit/s")
ax.set_xlabel("Duration in secs")
bps_tcp = bps_tcp[:len(bps_tcp) - 20]
bps_udp = bps_udp[:len(bps_udp) - 20]
ax.plot(range(0, len(bps_tcp)), bps_tcp, label="fast-reconfig " + "(" + protocol_t42 + ")", linestyle="dotted")
ax.plot(range(0, len(bps_udp)), bps_udp, label="fast-reconfig " + "(" + protocol_t43 + ")", linestyle="dotted")
if bps_tcp_h is not None and bps_udp_h is not None:
bps_tcp_h = bps_tcp_h[:len(bps_tcp_h) - 20]
bps_udp_h = bps_udp_h[:len(bps_udp_h) - 20]
ax.plot(range(0, len(bps_tcp_h)), bps_tcp_h, label="hitless " + "(" + protocol_t42_h + ")", linestyle="dashed")
ax.plot(range(0, len(bps_udp_h)), bps_udp_h, label="hitless " + "(" + protocol_t43_h + ")", linestyle="dashed")
# Put a legend below current axis
ax.legend(bbox_to_anchor =(0.5,-0.66), loc='lower center', ncol=2)
fig.suptitle("iPerf Bandwidth")
plt.tight_layout()
plt.grid(True)
plt.savefig("IPerf-bps-{}{}.pdf".format(p4code, mode), bbox_inches='tight')
plt.close()
fig = plt.figure()
ax = fig.add_subplot(211)
ax.set_ylabel("Throughput in MBit/s")
ax.set_xlabel("Duration in secs")
ax.plot(range(0, len(bps_tcp)), bps_tcp, label="fast-reconfig " + "(" + protocol_t42 + ")", linestyle="dotted")
if bps_tcp_h is not None:
ax.plot(range(0, len(bps_tcp_h)), bps_tcp_h, label="hitless " + "(" + protocol_t42_h + ")", linestyle="dashed")
# Put a legend below current axis
ax.legend(bbox_to_anchor =(0.5,-0.66), loc='lower center', ncol=2)
fig.suptitle("iPerf Bandwidth")
fig.set_tight_layout(True)
plt.tight_layout()
plt.grid(True)
plt.savefig("IPerf-bps-TCP-{}{}.pdf".format(p4code, mode), bbox_inches='tight')
plt.close()
fig = plt.figure()
ax = fig.add_subplot(211)
ax.set_ylabel("Throughput in MBit/s")
ax.set_xlabel("Duration in secs")
ax.plot(range(0, len(bps_udp)), bps_udp, label="fast-reconfig " + "(" + protocol_t43 + ")", linestyle="dotted")
if bps_udp_h is not None:
ax.plot(range(0, len(bps_udp_h)), bps_udp_h, label="hitless " + "(" + protocol_t43_h + ")", linestyle="dashed")
# Put a legend below current axis
ax.legend(bbox_to_anchor =(0.5,-0.66), loc='lower center', ncol=2)
fig.suptitle("iPerf Bandwidth")
fig.set_tight_layout(True)
plt.tight_layout()
plt.grid(True)
plt.savefig("IPerf-bps-UDP-{}{}.pdf".format(p4code, mode), bbox_inches='tight')
plt.close()
def plot_iperf_bitrate_in_different_files(p4code, bps_tcp, bps_udp, protocol_t42, protocol_t43):
fig = plt.figure()
ax = fig.add_subplot(211)
ax.set_ylabel("Throughput in MBit/s")
ax.set_xlabel("Duration in secs")
ax.plot(range(0, len(bps_tcp)), bps_tcp, label="Bandwidth " + "(" + protocol_t42 + ")")
# Put a legend below current axis
ax.legend(bbox_to_anchor =(0.5,-0.66), loc='lower center', ncol=1)
fig.suptitle("IPerf")
plt.tight_layout()
plt.grid(True)
plt.savefig("IPerf-{}-bps-{}{}.pdf".format(protocol_t42, p4code, mode), bbox_inches='tight')
plt.close()
fig = plt.figure()
ax = fig.add_subplot(211)
ax.set_ylabel("Throughput in MBit/s")
ax.set_xlabel("Duration in secs")
# Put a legend below current axis
ax.plot(range(0, len(bps_udp)), bps_udp, label="Bandwidth " + "(" + protocol_t43 + ")")
ax.legend(bbox_to_anchor =(0.5,-0.66), loc='lower center', ncol=1)
fig.suptitle("IPerf UDP {}")
plt.tight_layout()
plt.grid(True)
plt.savefig("IPerf-{}-bps-{}{}.pdf".format(protocol_t43, p4code, mode), bbox_inches='tight')
plt.close()
def plot_iperf_tcp_retransmits(mode, p4code, retransmits_tcp, retransmits_udp):
fig, ax = plt.subplots(1,1, figsize=(8,2))
ax.set_xlabel("Duration in secs")
ax.set_ylabel("Retransmit Counts")
ax.plot(range(0, len(retransmits_tcp)), retransmits_tcp, linestyle="dashed", label="Retransmits")
x_ticks = ax.get_xticks() * MODES[mode]["export_interval"]
ax.set_xticklabels(x_ticks)
ax.legend(bbox_to_anchor =(0.5,-0.66), loc='lower center', ncol=1)
fig.suptitle("IPerf")
plt.tight_layout()
plt.savefig("IPerf-TCP-Retransmits-{}{}.pdf".format(p4code, mode), bbox_inches='tight')
plt.close()
def evaluate_time_measurement(mode, p4code):
"""
Create a processed CSV file from the collected timemeasurement data.
"""
df = pd.read_csv(experiment_data_source_path + "time_measurement-{}{}.csv".format(p4code, mode))
new_df = pd.DataFrame()
new_df["protocol"] = df["protocol"]
new_df["iteration"] = df["iteration"]
new_df["swap_id"] = df["swap_id"]
new_df["total"] = ((df["swap_end"] - df["swap_started"]) / 1000).round(decimals=3)
new_df["code_swap"] = ((df["initial_step_start"] - df["swap_started"]) / 1000).round(decimals=3)
new_df["initialization"] = ((df["initial_step_end"] - df["initial_step_start"]) / 1000).round(decimals=3)
new_df = new_df.groupby(["protocol", "swap_id"]).mean().reset_index().drop("iteration", axis=1).round(decimals=3)
new_df.to_csv("evaluated_time_measurement-{}{}.csv".format(p4code, mode), index=False)
def merge_time_measurement(p4code):
"""
Merge the time measurement data of multiple runs together in one file.
"""
merge_df = pd.DataFrame()
dfs = []
for dim in MODES.keys():
df : pd.DataFrame = pd.read_csv("evaluated_time_measurement-{}{}.csv".format(p4code, dim))
df.insert(0, "dev_init_mode", [dim[1:] for i in range(len(df.index))])
df.insert(0, "p4code", [p4code for i in range(len(df.index))])
dfs.append(df)
merge_df = pd.merge(dfs[0], dfs[1], how="outer", on=list(dfs[0].columns))
merge_df.to_csv("merged_evaluated_time_measurement-{}.csv".format(p4code), index=False)
def create_aggregated_latex_time_measurement_table(p4code):
"""
Creates an aggregated time measurement table in LaTeX format out of a CSV file.
"""
df : pd.DataFrame = pd.read_csv("merged_evaluated_time_measurement-{}.csv".format(p4code))
df = df.drop(["p4code", "swap_id"], axis=1)
merge_df = df.groupby(["dev_init_mode","protocol"]).mean().reset_index()
merge_df = merge_df.reindex(columns = [col for col in df.columns if col != 'total'] + ['total'])
# merge_df.to_csv("test.csv", index=False)
# merge_df : pd.DataFrame = pd.read_csv("test.csv")
merge_df.style.set_table_styles([
{'selector': 'toprule', 'props': ':hline;'},
{'selector': 'midrule', 'props': ':hline;'},
# {'selector': 'tr', 'props': ':hline;'},
{'selector': 'bottomrule', 'props': ':hline;'},
], overwrite=False).to_latex("time_measurement_meaned_swap-{}.tex".format(p4code), convert_css=True, position_float="centering", clines="all;data", column_format="".join(["|c" for i in range(len(df.columns))]) + "|")
def create_latex_time_measurement_table(p4code):
"""
Creates a time measurement table containing all iterations in LaTeX format out of a CSV file.
"""
df : pd.DataFrame = pd.read_csv("merged_evaluated_time_measurement-{}.csv".format(p4code))
df = df.drop("p4code", axis=1)
df = df.reindex(columns = [col for col in df.columns if col != 'total'] + ['total'])
df.style.hide(axis="index").set_table_styles([
{'selector': 'toprule', 'props': ':hline;'},
{'selector': 'midrule', 'props': ':hline;'},
# {'selector': 'tr', 'props': ':hline;'},
{'selector': 'bottomrule', 'props': ':hline;'},
], overwrite=False).to_latex("time_measurement-{}.tex".format(p4code), convert_css=True, position_float="centering", clines="all;data", column_format="".join(["|c" for i in range(len(df.columns))]) + "|")
for p4code in P4CODE:
for mode, metadata in MODES.items():
bps_tcp, retransmits_tcp, target_ip_t42, protocol_t42, target_bitrate_t42 = create_connection_line("iperf-c-{}-{}{}.json", mode, p4code, metadata["iterations"])
bps_udp, retransmits_udp, target_ip_t43, protocol_t43, target_bitrate_t43 = create_connection_line("iperf-c-{}-UDP-{}{}.json", mode, p4code, metadata["iterations"])
plot_iperf_bitrate_in_different_files(mode, p4code, bps_tcp, bps_udp, protocol_t42, protocol_t43)
plot_iperf_bitrate_in_one_files(mode, p4code, bps_tcp, bps_udp, protocol_t42, protocol_t43)
if experiment_proto[mode] == "TCP":
plot_iperf_tcp_retransmits(mode, p4code, retransmits_tcp, retransmits_udp)
evaluate_time_measurement(mode, p4code)
merge_time_measurement(p4code)
create_latex_time_measurement_table(p4code)
create_aggregated_latex_time_measurement_table(p4code)
for p4code in P4CODE:
bps_tcp, retransmits_tcp, target_ip_t42, protocol_t42, target_bitrate_t42 = create_connection_line("iperf-c-{}-{}{}.json", "-fast-reconfig", p4code, MODES["-fast-reconfig"]["iterations"])
bps_udp, retransmits_udp, target_ip_t42_udp, protocol_t42_udp, target_bitrate_t43 = create_connection_line("iperf-c-{}-UDP-{}{}.json", "-fast-reconfig", p4code, MODES["-fast-reconfig"]["iterations"])
bps_tcp_h, retransmits_tcp_h, target_ip_t42_h, protocol_t42_h, target_bitrate_t42_h = create_connection_line("iperf-c-{}-{}{}.json", "-hitless", p4code, MODES["-hitless"]["iterations"])
bps_udp_h, retransmits_udp_h, target_ip_t42_udp_h, protocol_t42_udp_h, target_bitrate_t43_h = create_connection_line("iperf-c-{}-UDP-{}{}.json", "-hitless", p4code, MODES["-hitless"]["iterations"])
plot_iperf_bitrate_in_one_files("", p4code, bps_tcp, bps_udp, protocol_t42, protocol_t42_udp, bps_tcp_h, bps_udp_h, protocol_t42_h, protocol_t42_udp_h)