-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathgroup_matching.py
80 lines (68 loc) · 2.53 KB
/
group_matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
=========================
neuromatch Group Matching
=========================
Group matching script and its output. We read dataset from Cloud Firestore
and export as CSV, and JSON file.
TODO: make it as a script, add documentation on how it works
"""
import numpy as np
import pandas as pd
from fuzzywuzzy import fuzz
from tqdm import tqdm
from scipy.cluster.hierarchy import linkage
import hcluster # requires dedupe-hcluster
from paper_reviewer_matcher import (
preprocess, compute_affinity
)
def compute_conflicts(df):
"""
Compute conflict for a given dataframe
"""
cois = []
for i, r in tqdm(df.iterrows()):
exclude_list = r['conflicts'].split(';')
for j, r_ in df.iterrows():
if max([fuzz.ratio(r_['fullname'], n) for n in exclude_list]) >= 85:
cois.append([i, j])
cois.append([j, i])
return cois
def generate_pod_numbers(n_users, n_per_group):
"""
Generate pod numbers in sequence
"""
groups = []
for i in range(1, int(n_users / n_per_group) + 2):
groups.extend([i] * n_per_group)
groups = groups[:n_users]
return groups
if __name__ == '__main__':
users = pd.read_csv('data/mindmatch_example.csv').to_dict(orient='records')
n_users = len(users)
print('Number of registered users: {}'.format(n_users))
users_df = pd.DataFrame(users).fillna('')
users_dict = {r['user_id']: dict(r) for _, r in users_df.iterrows()} # map of user id to details
persons_1 = list(map(preprocess, list(users_df['abstracts'])))
persons_2 = list(map(preprocess, list(users_df['abstracts'])))
A = compute_affinity(
persons_1, persons_2,
n_components=30, min_df=2, max_df=0.8,
weighting='tfidf', projection='svd'
)
cois_list = compute_conflicts(users_df)
for i, j in cois_list:
A[i, j] = -1
A_cluster = - A
A_cluster[A_cluster == 1000] = 1
A_rand = np.random.randn(n_users, n_users) * 0.01 * A_cluster.var() # add randomness
z = linkage(A_cluster + A_rand,
method='average',
metric='euclidean',
optimal_ordering=True)
cluster = hcluster.fcluster(z, t=0.01,
criterion='distance') # distance
users_group_df['cluster'] = cluster
users_sorted_df = users_group_df.sort_values('cluster')
cluster_numbers = generate_pod_numbers(n_users=len(users_sorted_df), n_per_group=5)
users_sorted_df['cluster'] = cluster_numbers
users_sorted_df.to_csv('group_matching_users.csv', index=False)