forked from ZFancy/SFAT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Centralized_AT.py
172 lines (141 loc) · 6.25 KB
/
Centralized_AT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import copy
import time
import torch
import pickle
import numpy as np
import torch.nn.functional as F
import matplotlib.pyplot as plt
import attack_generator as attack
from models import *
from torch import nn
from tqdm import tqdm
from logger import Logger
from utils import get_dataset
from options import args_parser
from numpy.random import shuffle
from update import test_inference
from matplotlib.pyplot import title
from torch.utils.data import DataLoader
def TRADES_loss(adv_logits, natural_logits, target, beta):
batch_size = len(target)
criterion_kl = nn.KLDivLoss(size_average=False).cuda()
loss_natural = nn.CrossEntropyLoss(reduction='mean')(natural_logits, target)
loss_robust = (1.0 / batch_size) * criterion_kl(F.log_softmax(adv_logits, dim=1),
F.softmax(natural_logits, dim=1))
loss = loss_natural + beta * loss_robust
return loss
def MART_loss(adv_logits, natural_logits, target, beta):
kl = nn.KLDivLoss(reduction='none')
batch_size = len(target)
adv_probs = F.softmax(adv_logits, dim=1)
tmp1 = torch.argsort(adv_probs, dim=1)[:, -2:]
new_y = torch.where(tmp1[:, -1] == target, tmp1[:, -2], tmp1[:, -1])
loss_adv = F.cross_entropy(adv_logits, target) + F.nll_loss(torch.log(1.0001 - adv_probs + 1e-12), new_y)
nat_probs = F.softmax(natural_logits, dim=1)
true_probs = torch.gather(nat_probs, 1, (target.unsqueeze(1)).long()).squeeze()
loss_robust = (1.0 / batch_size) * torch.sum(
torch.sum(kl(torch.log(adv_probs + 1e-12), nat_probs), dim=1) * (1.0000001 - true_probs))
loss = loss_adv + float(beta) * loss_robust
return loss
# Save checkpoint
def save_checkpoint(state, checkpoint='../centralized_AT_result', filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if __name__ == '__main__':
args = args_parser()
device = 'cuda' if args.gpu else 'cpu'
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
# Store path
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
# load datasets
train_dataset, test_dataset, _ = get_dataset(args)
# build model
if args.modeltype == 'NIN':
global_model = NIN()
elif args.modeltype == 'SmallCNN':
global_model = SmallCNN()
elif args.modeltype == 'resnet18':
global_model = ResNet18()
print('==> CENTER')
title = 'CENTER'
logger_test = Logger(os.path.join(args.out_dir, 'log_results.txt'), title=title)
logger_test.set_names(['Global Epoch', 'Local Epoch', 'Epoch', 'Natural Test Acc', 'PGD20 Acc'])
if args.dataset == 'cifar-10':
eps = 8/255
sts = 2/255
if args.dataset == 'svhn':
eps = 4/255
sts = 1/255
if args.dataset == 'cifar-100':
eps = 8/255
sts = 2/255
# Set the model to train and send it to device.
global_model.to(device)
print(global_model)
global_best_natural = 0
global_best_pgd = 0
best_epoch = 0
# Training
# Set optimizer and criterion
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(global_model.parameters(), lr=args.lr,
momentum=0.9)
elif args.optimizer == 'adam':
optimizer = torch.optim.Adam(global_model.parameters(), lr=args.lr,
weight_decay=1e-4)
trainloader = DataLoader(train_dataset, batch_size=args.local_bs, shuffle=True)
testloader = DataLoader(test_dataset, batch_size=args.local_bs, shuffle=False)
criterion = torch.nn.CrossEntropyLoss(reduction="mean").to(device)
epoch_loss = []
for epoch in tqdm(range(args.epochs)):
batch_loss = []
for batch_idx, (images, labels) in enumerate(trainloader):
images, labels = images.to(device), labels.to(device)
x_adv, _ = attack.PGD(global_model,images,labels,eps,sts,args.num_steps,loss_fn="cent",category="Madry",rand_init=True)
global_model.train()
optimizer.zero_grad()
outputs = global_model(x_adv)
if args.train_method == 'AT':
loss = criterion(outputs, labels)
if args.train_method == 'TRADES':
nat_outputs = global_model(images)
loss = TRADES_loss(outputs, nat_outputs, labels, beta=6.0)
if args.train_method == 'MART':
nat_outputs = global_model(images)
loss = MART_loss(outputs, nat_outputs, labels, beta=6.0)
loss.backward()
optimizer.step()
if batch_idx % 50 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch+1, batch_idx * len(images), len(trainloader.dataset),
100. * batch_idx / len(trainloader), loss.item()))
batch_loss.append(loss.item())
loss_avg = sum(batch_loss)/len(batch_loss)
print('\nTrain loss:', loss_avg)
epoch_loss.append(loss_avg)
_, test_nat_acc = attack.eval_clean(global_model, testloader)
_, test_pgd20_acc = attack.eval_robust(global_model, testloader, perturb_steps=20, epsilon=eps, step_size=sts,loss_fn="cent", category="Madry", random=True)
print('Nat Test Acc: {:.2f}%'.format(100*test_nat_acc))
print('PGD-20 Test Acc: {:.2f}%'.format(100*test_pgd20_acc))
if test_pgd20_acc >= global_best_pgd:
global_best_pgd = test_pgd20_acc
global_best_natural = test_nat_acc
best_epoch = epoch
save_checkpoint({
'epoch': epoch + 1,
'state_dict': global_model.state_dict(),
'test_nat_acc': test_nat_acc,
'test_pgd20_acc': test_pgd20_acc,
},checkpoint=args.out_dir,filename='bestpoint.pth.tar')
logger_test.append([args.epochs, args.local_ep, epoch, test_nat_acc, test_pgd20_acc])
# final testing
test_acc, test_loss = test_inference(args, global_model, test_dataset)
print('Test on', len(test_dataset), 'samples')
print("Test Accuracy: {:.2f}%".format(100*test_acc))