forked from facebookresearch/VideoPose3D
-
Notifications
You must be signed in to change notification settings - Fork 17
/
run.py
385 lines (311 loc) · 15.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import numpy as np
from common.arguments import parse_args
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import os
import sys
import errno
from common.camera import *
from common.model import *
from common.loss import *
from common.generators import ChunkedGenerator, UnchunkedGenerator
from time import time
from common.utils import deterministic_random
args = parse_args()
print(args)
try:
# Create checkpoint directory if it does not exist
os.makedirs(args.checkpoint)
except OSError as e:
if e.errno != errno.EEXIST:
raise RuntimeError('Unable to create checkpoint directory:', args.checkpoint)
print('Loading dataset...')
dataset_path = 'data/data_3d_' + args.dataset + '.npz'
if args.dataset == 'h36m':
from common.h36m_dataset import Human36mDataset
dataset = Human36mDataset(dataset_path)
elif args.dataset.startswith('humaneva'):
from common.humaneva_dataset import HumanEvaDataset
dataset = HumanEvaDataset(dataset_path)
else:
raise KeyError('Invalid dataset')
print('Preparing data...')
for subject in dataset.subjects():
for action in dataset[subject].keys():
anim = dataset[subject][action]
positions_3d = []
for cam in anim['cameras']:
pos_3d = world_to_camera(anim['positions'], R=cam['orientation'], t=cam['translation'])
pos_3d[:, 1:] -= pos_3d[:, :1] # Remove global offset, but keep trajectory in first position
positions_3d.append(pos_3d)
anim['positions_3d'] = positions_3d
print('Loading 2D detections...')
#keypoints = np.load('data/data_2d_' + args.dataset + '_' + args.keypoints + '.npz')
keypoints = np.load('data/data_2d_' + args.keypoints + '.npz')
keypoints_symmetry = keypoints['metadata'].item()['keypoints_symmetry']
kps_left, kps_right = list(keypoints_symmetry[0]), list(keypoints_symmetry[1])
kps_left = [1, 3, 5, 7, 9, 11, 13, 15]
kps_right = [2, 4, 6, 8, 10, 12, 14, 16]
joints_left, joints_right = list(dataset.skeleton().joints_left()), list(dataset.skeleton().joints_right())
keypoints = keypoints['positions_2d'].item()
# keypoints['S1']['Directions 1'][0].shape == 1384,17,2 should be 3 though
# when loading the file provided py pavllo as example the shape is fine (1384,17,3) and the joints left = <class 'list'>: [4, 5, 6, 11, 12, 13] and right = <class 'list'>: [1, 2, 3, 14, 15, 16]
subject = 'S1'
action = 'Directions'
#for subject in keypoints.keys():
# for action in keypoints[subject]:
# for cam_idx, kps in enumerate(keypoints[subject][action]):
# # Normalize camera frame
# cam = dataset.cameras()[subject][cam_idx]
# kps[..., :2] = normalize_screen_coordinates(kps[..., :2], w=cam['res_w'], h=cam['res_h'])
# keypoints[subject][action][cam_idx] = kps
width_of = 1080
height_of = 1080
for cam_idx, kps in enumerate(keypoints[subject][action]):
# Normalize camera frame
cam = dataset.cameras()[subject][cam_idx]
kps[..., :2] = normalize_screen_coordinates(kps[..., :2], w=width_of, h=height_of)
keypoints[subject][action][cam_idx] = kps
subjects_train = args.subjects_train.split(',')
subjects_semi = [] if not args.subjects_unlabeled else args.subjects_unlabeled.split(',')
subjects_test = args.subjects_test.split(',')
semi_supervised = len(subjects_semi) > 0
if semi_supervised and not dataset.supports_semi_supervised():
raise RuntimeError('Semi-supervised training is not implemented for this dataset')
def fetch(subjects, action_filter=None, subset=1, parse_3d_poses=True):
out_poses_3d = []
out_poses_2d = []
out_camera_params = []
subject = 'S1'
action = 'Directions'
poses_2d = keypoints[subject][action]
for i in range(len(poses_2d)): # Iterate across cameras
out_poses_2d.append(poses_2d[i])
if len(out_camera_params) == 0:
out_camera_params = None
if len(out_poses_3d) == 0:
out_poses_3d = None
stride = args.downsample
if subset < 1:
for i in range(len(out_poses_2d)):
n_frames = int(round(len(out_poses_2d[i])//stride * subset)*stride)
start = deterministic_random(0, len(out_poses_2d[i]) - n_frames + 1, str(len(out_poses_2d[i])))
out_poses_2d[i] = out_poses_2d[i][start:start+n_frames:stride]
if out_poses_3d is not None:
out_poses_3d[i] = out_poses_3d[i][start:start+n_frames:stride]
elif stride > 1:
# Downsample as requested
for i in range(len(out_poses_2d)):
out_poses_2d[i] = out_poses_2d[i][::stride]
if out_poses_3d is not None:
out_poses_3d[i] = out_poses_3d[i][::stride]
return out_camera_params, out_poses_3d, out_poses_2d
action_filter = None if args.actions == '*' else args.actions.split(',')
if action_filter is not None:
print('Selected actions:', action_filter)
cameras_valid, poses_valid, poses_valid_2d = fetch(subjects_test, action_filter)
filter_widths = [int(x) for x in args.architecture.split(',')]
model_pos = TemporalModel(poses_valid_2d[0].shape[-2], poses_valid_2d[0].shape[-1], 17,
filter_widths=filter_widths, causal=args.causal, dropout=args.dropout, channels=args.channels,
dense=args.dense)
receptive_field = model_pos.receptive_field()
print('INFO: Receptive field: {} frames'.format(receptive_field))
pad = (receptive_field - 1) // 2 # Padding on each side
if args.causal:
print('INFO: Using causal convolutions')
causal_shift = pad
else:
causal_shift = 0
model_params = 0
for parameter in model_pos.parameters():
model_params += parameter.numel()
print('INFO: Trainable parameter count:', model_params)
if torch.cuda.is_available():
model_pos = model_pos.cuda()
# model_pos_train = model_pos_train.cuda()
if args.resume or args.evaluate:
chk_filename = os.path.join(args.checkpoint, args.resume if args.resume else args.evaluate)
print('Loading checkpoint', chk_filename)
checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
print('This model was trained for {} epochs'.format(checkpoint['epoch']))
# model_pos_train.load_state_dict(checkpoint['model_pos'])
model_pos.load_state_dict(checkpoint['model_pos'])
test_generator = UnchunkedGenerator(cameras_valid, poses_valid, poses_valid_2d,
pad=pad, causal_shift=causal_shift, augment=False,
kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)
print('INFO: Testing on {} frames'.format(test_generator.num_frames()))
def evaluate(test_generator, action=None, return_predictions=False):
epoch_loss_3d_pos = 0
epoch_loss_3d_pos_procrustes = 0
epoch_loss_3d_pos_scale = 0
epoch_loss_3d_vel = 0
with torch.no_grad():
model_pos.eval()
N = 0
for _, batch, batch_2d in test_generator.next_epoch():
inputs_2d = torch.from_numpy(batch_2d.astype('float32'))
if torch.cuda.is_available():
inputs_2d = inputs_2d.cuda()
# Positional model
predicted_3d_pos = model_pos(inputs_2d)
# Test-time augmentation (if enabled)
if test_generator.augment_enabled():
# Undo flipping and take average with non-flipped version
predicted_3d_pos[1, :, :, 0] *= -1
predicted_3d_pos[1, :, joints_left + joints_right] = predicted_3d_pos[1, :, joints_right + joints_left]
predicted_3d_pos = torch.mean(predicted_3d_pos, dim=0, keepdim=True)
if return_predictions:
return predicted_3d_pos.squeeze(0).cpu().numpy()
inputs_3d = torch.from_numpy(batch.astype('float32'))
if torch.cuda.is_available():
inputs_3d = inputs_3d.cuda()
inputs_3d[:, :, 0] = 0
if test_generator.augment_enabled():
inputs_3d = inputs_3d[:1]
error = mpjpe(predicted_3d_pos, inputs_3d)
epoch_loss_3d_pos_scale += inputs_3d.shape[0]*inputs_3d.shape[1] * n_mpjpe(predicted_3d_pos, inputs_3d).item()
epoch_loss_3d_pos += inputs_3d.shape[0]*inputs_3d.shape[1] * error.item()
N += inputs_3d.shape[0] * inputs_3d.shape[1]
inputs = inputs_3d.cpu().numpy().reshape(-1, inputs_3d.shape[-2], inputs_3d.shape[-1])
predicted_3d_pos = predicted_3d_pos.cpu().numpy().reshape(-1, inputs_3d.shape[-2], inputs_3d.shape[-1])
epoch_loss_3d_pos_procrustes += inputs_3d.shape[0]*inputs_3d.shape[1] * p_mpjpe(predicted_3d_pos, inputs)
# Compute velocity error
epoch_loss_3d_vel += inputs_3d.shape[0]*inputs_3d.shape[1] * mean_velocity_error(predicted_3d_pos, inputs)
if action is None:
print('----------')
else:
print('----'+action+'----')
e1 = (epoch_loss_3d_pos / N)*1000
e2 = (epoch_loss_3d_pos_procrustes / N)*1000
e3 = (epoch_loss_3d_pos_scale / N)*1000
ev = (epoch_loss_3d_vel / N)*1000
print('Test time augmentation:', test_generator.augment_enabled())
print('Protocol #1 Error (MPJPE):', e1, 'mm')
print('Protocol #2 Error (P-MPJPE):', e2, 'mm')
print('Protocol #3 Error (N-MPJPE):', e3, 'mm')
print('Velocity Error (MPJVE):', ev, 'mm')
print('----------')
return e1, e2, e3, ev
if args.render:
print('Rendering...')
my_action = 'Directions'
#input_keypoints = keypoints[args.viz_subject][args.viz_action][args.viz_camera].copy()
input_keypoints = keypoints[args.viz_subject][my_action][args.viz_camera].copy()
if args.viz_subject in dataset.subjects() and args.viz_action in dataset[args.viz_subject]:
ground_truth = dataset[args.viz_subject][args.viz_action]['positions_3d'][args.viz_camera].copy()
##Changes
ground_truth = None
else:
ground_truth = None
print('INFO: this action is unlabeled. Ground truth will not be rendered.')
gen = UnchunkedGenerator(None, None, [input_keypoints],
pad=pad, causal_shift=causal_shift, augment=args.test_time_augmentation,
kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)
prediction = evaluate(gen, return_predictions=True)
if ground_truth is not None:
# Reapply trajectory
trajectory = ground_truth[:, :1]
ground_truth[:, 1:] += trajectory
prediction += trajectory
# Invert camera transformation
cam = dataset.cameras()[args.viz_subject][args.viz_camera]
if ground_truth is not None:
prediction = camera_to_world(prediction, R=cam['orientation'], t=cam['translation'])
ground_truth = camera_to_world(ground_truth, R=cam['orientation'], t=cam['translation'])
else:
# If the ground truth is not available, take the camera extrinsic params from a random subject.
# They are almost the same, and anyway, we only need this for visualization purposes.
for subject in dataset.cameras():
if 'orientation' in dataset.cameras()[subject][args.viz_camera]:
rot = dataset.cameras()[subject][args.viz_camera]['orientation']
break
prediction = camera_to_world(prediction, R=rot, t=0)
# We don't have the trajectory, but at least we can rebase the height
prediction[:, :, 2] -= np.min(prediction[:, :, 2])
anim_output = {'Reconstruction': prediction}
if ground_truth is not None and not args.viz_no_ground_truth:
anim_output['Ground truth'] = ground_truth
input_keypoints = image_coordinates(input_keypoints[..., :2], w=width_of, h=height_of)
manual_fps = 25
from common.visualization import render_animation
render_animation(input_keypoints, anim_output,
dataset.skeleton(), manual_fps, args.viz_bitrate, cam['azimuth'], args.viz_output,
limit=args.viz_limit, downsample=args.viz_downsample, size=args.viz_size,
input_video_path=args.viz_video, viewport=(cam['res_w'], cam['res_h']),
input_video_skip=args.viz_skip)
else:
print('Evaluating...')
all_actions = {}
all_actions_by_subject = {}
for subject in subjects_test:
if subject not in all_actions_by_subject:
all_actions_by_subject[subject] = {}
for action in dataset[subject].keys():
action_name = action.split(' ')[0]
if action_name not in all_actions:
all_actions[action_name] = []
if action_name not in all_actions_by_subject:
all_actions_by_subject[subject][action_name] = []
all_actions[action_name].append((subject, action))
all_actions_by_subject[subject][action_name].append((subject, action))
def fetch_actions(actions):
out_poses_3d = []
out_poses_2d = []
for subject, action in actions:
poses_2d = keypoints[subject][action]
for i in range(len(poses_2d)): # Iterate across cameras
out_poses_2d.append(poses_2d[i])
poses_3d = dataset[subject][action]['positions_3d']
assert len(poses_3d) == len(poses_2d), 'Camera count mismatch'
for i in range(len(poses_3d)): # Iterate across cameras
out_poses_3d.append(poses_3d[i])
stride = args.downsample
if stride > 1:
# Downsample as requested
for i in range(len(out_poses_2d)):
out_poses_2d[i] = out_poses_2d[i][::stride]
if out_poses_3d is not None:
out_poses_3d[i] = out_poses_3d[i][::stride]
return out_poses_3d, out_poses_2d
def run_evaluation(actions, action_filter=None):
errors_p1 = []
errors_p2 = []
errors_p3 = []
errors_vel = []
for action_key in actions.keys():
if action_filter is not None:
found = False
for a in action_filter:
if action_key.startswith(a):
found = True
break
if not found:
continue
poses_act, poses_2d_act = fetch_actions(actions[action_key])
gen = UnchunkedGenerator(None, poses_act, poses_2d_act,
pad=pad, causal_shift=causal_shift, augment=args.test_time_augmentation,
kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)
e1, e2, e3, ev = evaluate(gen, action_key)
errors_p1.append(e1)
errors_p2.append(e2)
errors_p3.append(e3)
errors_vel.append(ev)
print('Protocol #1 (MPJPE) action-wise average:', round(np.mean(errors_p1), 1), 'mm')
print('Protocol #2 (P-MPJPE) action-wise average:', round(np.mean(errors_p2), 1), 'mm')
print('Protocol #3 (N-MPJPE) action-wise average:', round(np.mean(errors_p3), 1), 'mm')
print('Velocity (MPJVE) action-wise average:', round(np.mean(errors_vel), 2), 'mm')
if not args.by_subject:
run_evaluation(all_actions, action_filter)
else:
for subject in all_actions_by_subject.keys():
print('Evaluating on subject', subject)
run_evaluation(all_actions_by_subject[subject], action_filter)
print('')