-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_dicod.py
92 lines (83 loc) · 4.44 KB
/
main_dicod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from dicod.dicod import ALGO_GS, ALGO_RANDOM
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser('Test for the DICOD algorithm')
parser.add_argument('--njobs', type=int, default=10,
help='# max of process launched')
parser.add_argument('--nepoch', type=int, default=4,
help='# max of process launched')
parser.add_argument('-T', type=int, default=150,
help='Size of the problem')
parser.add_argument('-K', type=int, default=100,
help='Number of dictionary elements')
parser.add_argument('--debug', '-d', dest='d', type=int, default=0,
help='Debug level for the algorithm')
parser.add_argument('--hostfile', type=str, default=None,
help='Hostfile to pass to MPI')
parser.add_argument('--nrep', type=int, default=10,
help='# of repetition for each value of M')
parser.add_argument('--timeout', type=int, default=60,
help='Max time for each algorithm in sec')
parser.add_argument('--exp', type=str, default=None,
metavar='DIRECTORY', help='If present, exp'
' the result in the given DIRECTORY')
parser.add_argument('--jobs', action='store_true',
help='Compute the runtime for different number '
'of cores')
parser.add_argument('--lmbd', action='store_true',
help='Compute the scaling relatively to lmbd.')
parser.add_argument('--rcd', action='store_true',
help='Uses the random selection in CD')
parser.add_argument('--seg', action='store_true',
help='Uses locally greedy selection in CD')
parser.add_argument('--met', action='store_true',
help='Compute the optimization algorithms')
parser.add_argument('--no-display', action='store_false',
help='Compute the optimization algorithms')
parser.add_argument('--step', action='store_true',
help='Convolutional dictionary learning with signals '
'from humans walking.')
parser.add_argument('--rand', action='store_true',
help='Convolutional dictionary learning with randomly '
'generated signals.')
parser.add_argument('--run', type=str, nargs="+", default="all",
help='list of jobs to compute')
parser.add_argument('--optim', type=str, default="dicod",
help='Optimizer to test for scaling performances.')
args = parser.parse_args()
if args.jobs:
from utils.scaling_n_jobs import scaling_n_jobs
algorithm = ALGO_RANDOM if args.rcd else ALGO_GS
# # Extract njobs in list of str
# run = []
# for r in args.run:
# try:
# run += [int(r)]
# except ValueError:
# run += [r]
iter_njobs(T=args.T, max_jobs=args.njobs, n_rep=args.nrep,
save_dir=args.exp, max_iter=5e8, timeout=args.timeout,
hostfile=args.hostfile, lgg=False, debug=args.d,
algorithm=algorithm, seed=422742,
run=args.run, use_seg=args.seg)
if args.lmbd:
from utils.scaling_lmbd import scaling_lmbd
scaling_lmbd(T=args.T, n_jobs=args.njobs, n_rep=args.nrep,
exp_dir=args.exp, max_iter=5e9, timeout=args.timeout,
hostfile=args.hostfile, lgg=False, optimizer=args.optim,
debug=args.d, seed=422742)
if args.met:
from utils.compare_methods import compare_met
compare_met(T=args.T, K=args.K, save_dir=args.exp, max_iter=5e8,
timeout=args.timeout, n_jobs=args.njobs, debug=args.d,
hostfile=args.hostfile, display=args.no_display)
if args.step:
from utils.step_detect import step_detect
step_detect(exp_dir=args.exp, max_iter=5e6, timeout=args.timeout,
n_jobs=args.njobs, hostfile=args.hostfile,
n_epoch=args.nepoch, debug=args.d)
if args.rand:
from utils.dict_learn import dict_learn
dict_learn(exp_dir=args.exp, max_iter=5e6, timeout=args.timeout,
n_jobs=args.njobs, hostfile=args.hostfile,
n_epoch=args.nepoch, debug=args.d)