-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtask1c.yaml
270 lines (223 loc) · 6.64 KB
/
task1c.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
active_set: dcase2019_baseline
sets:
# DCASE2019 baseline
# ================================
- set_id: dcase2019_baseline
description: DCASE2019 baseline / Development setup
dataset:
method: baseline_development
- set_id: dcase2019_baseline_eval
description: DCASE2019 baseline / Evaluation setup
path:
application:
feature_extractor: eval_features
recognizer: eval_recognizer
dataset:
method: baseline_evaluation
- set_id: dcase2019_baseline_leaderboard
description: DCASE2019 baseline / Leader board setup
path:
application:
feature_extractor: leaderboard_features
recognizer: leaderboard_recognizer
dataset:
method: baseline_leaderboard
defaults:
flow:
feature_extraction: true
feature_normalization: true
learning: true
testing: true
evaluation: true
general:
overwrite: false # Overwrite previously stored data
active_fold_list: !!null # List of active folds
path:
dataset: datasets/
log: log/
application:
base: system/task1c
feature_extractor: features
feature_normalizer: normalization
learner: learner
recognizer: recognizer
evaluator: evaluator
dataset:
method: baseline_development
dataset_method_parameters:
baseline_development:
dataset: TAUUrbanAcousticScenes_2019_Openset_DevelopmentSet
evaluation_mode: folds
baseline_evaluation:
dataset: TAUUrbanAcousticScenes_2019_Openset_EvaluationSet
evaluation_mode: full
baseline_leaderboard:
dataset: TAUUrbanAcousticScenes_2019_Openset_LeaderboardSet
evaluation_mode: full
feature_extractor:
method: mel
win_length_seconds: 0.04
hop_length_seconds: 0.02
fs: 44100
feature_extractor_method_parameters:
mel:
spectrogram_type: magnitude
window_type: hamming_asymmetric
n_mels: 40
n_fft: 2048
fmin: 0
fmax: 22050
htk: false
normalize_mel_bands: false
data_processing_chain:
method: sequencing_chain
data_processing_chain_method_parameters:
sequencing_chain:
chain:
- processor_name: dcase_util.processors.FeatureReadingProcessor
- processor_name: dcase_util.processors.NormalizationProcessor
init_parameters:
enable: true
- processor_name: dcase_util.processors.SequencingProcessor
init_parameters:
sequence_length: 500
hop_length: 500
- processor_name: dcase_util.processors.DataShapingProcessor
init_parameters:
axis_list:
- sequence_axis
- data_axis
- time_axis
meta_processing_chain:
method: one_hot
meta_processing_chain_method_parameters:
one_hot:
chain:
- processor_name: dcase_util.processors.OneHotEncodingProcessor
learner:
method: cnn
learner_method_parameters:
cnn:
random_seed: 0
keras_profile: cuda0_fast
backend: tensorflow
validation_set:
enable: true
validation_amount: 0.3
balancing_mode: identifier_two_level_hierarchy
seed: 0
data:
data_format: channels_last
target_format: single_target_per_sequence
generator:
enable: false
model:
constants:
CONVOLUTION_INIT: glorot_uniform
CONVOLUTION_KERNEL_SIZE: 7
CONVOLUTION_ACTIVATION: relu
CONVOLUTION_DROPOUT: 0.3
CONVOLUTION_BORDER_MODE: same
DATA_FORMAT: channels_last
config:
# CNN layer 1
# ====================================
# Convolution layer
- class_name: Conv2D
config:
input_shape:
- FEATURE_VECTOR_LENGTH # data_axis
- INPUT_SEQUENCE_LENGTH # time_axis
- 1 # sequence_axis
filters: 32
kernel_size: CONVOLUTION_KERNEL_SIZE
padding: CONVOLUTION_BORDER_MODE
kernel_initializer: CONVOLUTION_INIT
data_format: DATA_FORMAT
# Batch normalization
- class_name: BatchNormalization
config:
axis: -1
# Detection layer
- class_name: Activation
config:
activation: CONVOLUTION_ACTIVATION
# Pooling layer
- class_name: MaxPooling2D
config:
pool_size:
- 5
- 5
data_format: DATA_FORMAT
# Drop out layer
- class_name: Dropout
config:
rate: CONVOLUTION_DROPOUT
# CNN layer 2
# ====================================
# Convolution layer
- class_name: Conv2D
config:
filters: 64
kernel_size: CONVOLUTION_KERNEL_SIZE
padding: CONVOLUTION_BORDER_MODE
kernel_initializer: CONVOLUTION_INIT
data_format: DATA_FORMAT
# Batch normalization
- class_name: BatchNormalization
config:
axis: -1
# Detection layer
- class_name: Activation
config:
activation: CONVOLUTION_ACTIVATION
# Pooling layer
- class_name: MaxPooling2D
config:
pool_size:
- 4
- 100
data_format: DATA_FORMAT
# Drop out layer
- class_name: Dropout
config:
rate: CONVOLUTION_DROPOUT
# Flatten
# ====================================
- class_name: Flatten
# Fully connected layer
# ====================================
- class_name: Dense
config:
units: 100
kernel_initializer: uniform
activation: relu
- class_name: Dropout
config:
rate: 0.3
# Output layer
# ====================================
- class_name: Dense
config:
units: CLASS_COUNT
kernel_initializer: uniform
activation: sigmoid
compile:
loss: binary_crossentropy
metrics:
- categorical_accuracy
optimizer:
class_name: Adam
fit:
epochs: 200
batch_size: 16
shuffle: True
callbacks:
StasherCallback:
monitor: val_categorical_accuracy
initial_delay: 50
recognizer:
frame_binarization:
enable: true
threshold: 0.5
type: global_threshold