A collection of utilities to perform analysis on a set of charms.
$ python get_charms.py --help
Usage: get_charms.py [OPTIONS] CHARM_LIST
Ensure updated repositories for all the charms from the provided list.
If a repository does not exist, clone it, otherwise do a pull. Assumes that
all the repositories are in an essentially read-only state and so pull will
run cleanly.
The `git` CLI tool is used via a subprocess, so must be able to handle any
authentication required.
Options:
--cache-folder TEXT
--help Show this message and exit.
This tool uses the git
CLI tool to clone a provided list of repositories, or
if those repositories already exist, then will git pull
each of them. The
clones are shallow single branch, and the assumption is that pull
will always
run cleanly (for example, because there are no local changes). The CLI should be
configured with appropriate permission to clone and pull each repository.
By default, the repositories are cloned into a .cache
folder, but this can be
changed using the --cache-folder
option.
The input must be a CSV file that has "Charm Name" (only used for logging) and
"Repository" columns. The repository must be a source that can be provided to
git
, for example https://github.com/canonical/operator
. To simplify
authentication, https://github.com/
is replaced by git@github.com:
when
calling the CLI.
Attempts to answer questions like:
- What version of ops is used?
- Are dependencies listed in requirements.txt, setup.py, or pyproject.toml?
- What dependencies are there other than ops?
- What version of Python is required?
- What optional dependency configurations are defined?
Example output:
Dependency Sources
ââââââââââââââââââââââââ³ââââââââ³âââââââââââââ
â Source â Count â Percentage â
â¡ââââââââââââââââââââââââââââââââââââââââââââ©
â poetry â 15 â 9.9 â
â requirements-dev.txt â 7 â 4.6 â
â requirements.txt â 142 â 94.0 â
ââââââââââââââââââââââââŽââââââââŽâââââââââââââ
Ops Versions
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ³ââââââââ³âââââââââââââ
â Version â Count â Percentage â
â¡ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ©
â ops â 47 â 31.1 â
â ops < 2.0 â 1 â 0.7 â
â ops >= 1.2.0 â 2 â 1.3 â
â ops~=2.3.0 â 1 â 0.7 â
â ops~=2.8.0 â 1 â 0.7 â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââŽââââââââŽâââââââââââââ
Common Dependencies
ââââââââââââââââââââ³ââââââââ³âââââââââââââ
â Package â Count â Percentage â
â¡ââââââââââââââââââââââââââââââââââââââââ©
â jsonschema â 80 â 53.0 â
â lightkube-models â 64 â 42.4 â
â lightkube â 63 â 41.7 â
â jinja2 â 58 â 38.4 â
â pyyaml â 56 â 37.1 â
â tenacity â 56 â 37.1 â
â websocket-client â 47 â 31.1 â
â requests â 46 â 30.5 â
â cryptography â 41 â 27.2 â
â pydantic â 41 â 27.2 â
ââââââââââââââââââââŽââââââââŽâââââââââââââ
Common Dependencies and Version
ââââââââââââââââââââââ³ââââââââ³âââââââââââââ
â Package â Count â Percentage â
â¡ââââââââââââââââââââââââââââââââââââââââââ©
â pyyaml==6.0.1 â 39 â 25.8 â
â requests==2.31.0 â 38 â 25.2 â
â jsonschema â 37 â 24.5 â
â certifi==2023.7.22 â 36 â 23.8 â
â idna==3.4 â 36 â 23.8 â
ââââââââââââââââââââââŽââââââââŽâââââââââââââ
pyproject.toml Optional Dependency
Sections
ââââââââââââââ³ââââââââ³âââââââââââââ
â Section â Count â Percentage â
â¡ââââââââââââââââââââââââââââââââââ©
â lib_pydeps â 2 â 1.3 â
ââââââââââââââŽââââââââŽâââââââââââââ
Provides insight into the Charm libs that are used and provided by the charms. For example:
Charm Lib Usage
ââââââââââââââââââ³ââââââââ³âââââââââââââ
â Number of Libs â Count â Percentage â
â¡ââââââââââââââââââââââââââââââââââââââ©
â 0 â 30 â 19.9 â
â 1 â 28 â 18.5 â
â 2 â 19 â 12.6 â
â 3 â 16 â 10.6 â
â 4 â 11 â 7.3 â
â 5 â 11 â 7.3 â
â 6 â 13 â 8.6 â
â 7 â 10 â 6.6 â
â 8 â 7 â 4.6 â
â 9 â 4 â 2.6 â
â 10 â 1 â 0.7 â
â 11 â 1 â 0.7 â
ââââââââââââââââââŒââââââââŒâââââââââââââ€
â Total â 151 â 100.0 â
ââââââââââââââââââŽââââââââŽâââââââââââââ
Common Charm Libs
ââââââââââââââââââââââââââââââââââ³ââââââââ³âââââââââââââ
â Lib â Count â Percentage â
â¡ââââââââââââââââââââââââââââââââââââââââââââââââââââââ©
â observability_libs â 79 â 52.3 â
â prometheus_k8s â 55 â 36.4 â
â grafana_k8s â 47 â 31.1 â
â tls_certificates_interface â 38 â 25.2 â
â data_platform_libs â 37 â 24.5 â
â loki_k8s â 28 â 18.5 â
â traefik_k8s â 22 â 14.6 â
â operator_libs_linux â 19 â 12.6 â
â nginx_ingress_integrator â 15 â 9.9 â
â grafana_agent â 10 â 6.6 â
â rolling_ops â 9 â 6.0 â
â sdcore_nrf â 8 â 5.3 â
â tempo_k8s â 7 â 4.6 â
â catalogue_k8s â 7 â 4.6 â
â kubeflow_dashboard â 7 â 4.6 â
â certificate_transfer_interface â 5 â 3.3 â
â harness_extensions â 4 â 2.6 â
â istio_pilot â 4 â 2.6 â
â postgresql_k8s â 4 â 2.6 â
â zookeeper â 4 â 2.6 â
ââââââââââââââââââââââââââââââââââŽââââââââŽâââââââââââââ
Provides answers to questions like:
- What version of Juju is used?
- What other assumptions does the metadata define?
- How many of each type of container is required?
- How many of each type of storage is required?
- How many of each type of device is required? (Note: currently none, so not in the output).
- What types of relations are defined?
- What types of resources are required?
Example output:
Juju Versions
âââââââââââââââââ³ââââââââ³âââââââââââââ
â Version â Count â Percentage â
â¡âââââââââââââââââââââââââââââââââââââ©
â juju â 2 â 1.3 â
â juju >= 2.9 â 1 â 0.7 â
â juju >= 2.9.0 â 2 â 1.3 â
â juju >= 3.0.2 â 2 â 1.3 â
â juju >= 3.0.3 â 2 â 1.3 â
â juju >= 3.1 â 7 â 4.6 â
âââââââââââââââââŽââââââââŽâââââââââââââ
Assumes
âââââââââââââââ³ââââââââ³âââââââââââââ
â Requirement â Count â Percentage â
â¡âââââââââââââââââââââââââââââââââââ©
â k8s-api â 52 â 34.4 â
âââââââââââââââŽââââââââŽâââââââââââââ
Common Resources
ââââââââââââââââââââââââââââââââââââ³ââââââââ³âââââââââââââ
â Resource â Count â Percentage â
â¡ââââââââââââââââââââââââââââââââââââââââââââââââââââââââ©
â oci-image â 31 â 20.5 â
â httpbin-image â 3 â 2.0 â
â lego-image â 3 â 2.0 â
â postgresql-image â 2 â 1.3 â
â statsd-prometheus-exporter-image â 2 â 1.3 â
ââââââââââââââââââââââââââââââââââââŽââââââââŽâââââââââââââ
Common Relations
âââââââââââââââââââââââââââââââââââ³ââââââââ³âââââââââââââ
â Relation â Count â Percentage â
â¡âââââââââââââââââââââââââââââââââââââââââââââââââââââââ©
â certificates : tls-certificates â 33 â 21.9 â
â ingress : ingress â 31 â 20.5 â
â logging : loki_push_api â 20 â 13.2 â
â nginx-route : nginx-route â 10 â 6.6 â
â catalogue : catalogue â 7 â 4.6 â
âââââââââââââââââââââââââââââââââââŽââââââââŽâââââââââââââ
Storage Types
ââââââââââââââ³ââââââââ³âââââââââââââ
â Storage â Count â Percentage â
â¡ââââââââââââââââââââââââââââââââââ©
â filesystem â 58 â 38.4 â
ââââââââââââââŽââââââââŽâââââââââââââ
Provides insight into the automated tests that the charms have. For example:
149 out of 151 (98.7%) use tox.
Unit Test Libraries
ââââââââââââ³ââââââââ³âââââââââââââ
â Library â Count â Percentage â
â¡ââââââââââââââââââââââââââââââââ©
â unittest â 90 â 60.4 â
â pytest â 144 â 96.6 â
ââââââââââââŽââââââââŽâââââââââââââ
Testing Frameworks
âââââââââââââââââââ³ââââââââ³âââââââââââââ
â Framework â Count â Percentage â
â¡âââââââââââââââââââââââââââââââââââââââ©
â Harness â 123 â 82.6 â
â Scenario â 15 â 10.1 â
â pytest-operator â 116 â 77.9 â
âââââââââââââââââââŽââââââââŽâââââââââââââ
Common Tox Environments
âââââââââââââââââââââââ³ââââââââ³âââââââââââââ
â Environment â Count â Percentage â
â¡âââââââââââââââââââââââââââââââââââââââââââ©
â lint â 149 â 100.0 â
â unit â 144 â 96.6 â
â integration â 127 â 85.2 â
â fmt â 122 â 81.9 â
â static â 44 â 29.5 â
â update-requirements â 39 â 26.2 â
â coverage-report â 24 â 16.1 â
â scenario â 20 â 13.4 â
â format â 19 â 12.8 â
â src-docs â 13 â 8.7 â
âââââââââââââââââââââââŽââââââââŽâââââââââââââ
Attempts to answer questions like:
- What events are observed?
- How many times is defer used?
- How many charms are using
hooks
orreactive
? (This is currently just in the logging output). - How many of the repos are bundles? (This is currently just in the logging output).
Example output:
Events
âââââââââââââââââââââââââââââââââââââ³ââââââââ³âââââââââââââ
â Event â Count â Percentage â
â¡âââââââââââââââââââââââââââââââââââââââââââââââââââââââââ©
â action â 52 â 35.4 â
â config_changed â 100 â 68.0 â
â install â 64 â 43.5 â
â leader_elected â 25 â 17.0 â
â pebble_ready â 74 â 50.3 â
â relation_broken â 27 â 18.4 â
â relation_changed â 44 â 29.9 â
â relation_created â 22 â 15.0 â
â relation_joined â 37 â 25.2 â
â remove â 31 â 21.1 â
â start â 25 â 17.0 â
â update_status â 45 â 30.6 â
â upgrade_charm â 41 â 27.9 â
âââââââââââââââââââââââââââââââââââââŽââââââââŽâââââââââââââ
event.defer() Frequency
âââââââââââââ³ââââââââ³âââââââââââââ
â Frequency â Count â Percentage â
â¡âââââââââââââââââââââââââââââââââ©
â 0 â 82 â 55.8 â
â 1 â 22 â 15.0 â
â 2 â 7 â 4.8 â
â 3 â 5 â 3.4 â
â 4 â 6 â 4.1 â
â 5 â 6 â 4.1 â
â 6 â 1 â 0.7 â
â 7 â 1 â 0.7 â
â 8 â 1 â 0.7 â
â 9 â 2 â 1.4 â
â 10 â 1 â 0.7 â
â 11 â 7 â 4.8 â
â 12 â 1 â 0.7 â
â 13 â 3 â 2.0 â
â 14 â 0 â 0.0 â
â 15 â 1 â 0.7 â
â 16 â 1 â 0.7 â
âââââââââââââŒââââââââŒâââââââââââââ€
â Total â 147 â 100.0 â
âââââââââââââŽââââââââŽâââââââââââââ
Attempts to answer questions like:
- Which frameworks and languages are charms using (according to CharmHub)?
- How long is it since charms have published an artifact?
Example output:
Frameworks
âââââââââââââ³ââââââââ³âââââââââââââ
â Framework â Count â Percentage â
â¡âââââââââââââââââââââââââââââââââ©
â operator â 136 â 99.3 â
âââââââââââââŽââââââââŽâââââââââââââ
Languages
ââââââââââââ³ââââââââ³âââââââââââââ
â Language â Count â Percentage â
â¡ââââââââââââââââââââââââââââââââ©
â python â 136 â 99.3 â
ââââââââââââŽââââââââŽâââââââââââââ
Newest Artifact
ââââââââ³ââââââââ³âââââââââââââ
â Days â Count â Percentage â
â¡ââââââââââââââââââââââââââââ©
â 0 â 15 â 10.9 â
â 1 â 35 â 25.5 â
â 2 â 14 â 10.2 â
â 3 â 3 â 2.2 â
â 4 â 1 â 0.7 â
â 6 â 1 â 0.7 â
â 8 â 2 â 1.5 â
â 9 â 4 â 2.9 â
â 10 â 2 â 1.5 â
â 906 â 1 â 0.7 â
ââââââââŽââââââââŽâââââââââââââ
Oldest Artifact
ââââââââ³ââââââââ³âââââââââââââ
â Days â Count â Percentage â
â¡ââââââââââââââââââââââââââââ©
â 1 â 3 â 2.2 â
â 2 â 1 â 0.7 â
â 3 â 3 â 2.2 â
â 7 â 1 â 0.7 â
â 8 â 2 â 1.5 â
â 9 â 1 â 0.7 â
â 986 â 1 â 0.7 â
â 995 â 1 â 0.7 â
â 1036 â 1 â 0.7 â
ââââââââŽââââââââŽâââââââââââââ
Run a tox environment across all of the charms at once.
To specify the tox
to use, pass the executable with the --executable
flag,
for example:
super-tox.py --executable=~/.local/bin/tox
- `super-tox.py --executable='uvx tox'
- `super-tox.py --executable='uvx --python=3.8 tox'
A configuration file can be provided to skip repositories if required, in the form:
[ignore]
# Intended for repos where it's too expensive to run the tests.
expensive = ["repo1", "repo2"]
# Intended for tests that interaction.
manual = ["repo3"]
# Intended for tests that need dependencies that cannot be installed.
requirements = ["repo4", "repo5"]
# Intended for tests that don't use the `ops` library.
not_ops = ["repo6"]
# Intended for any other cases.
misc = ["repo7"]
TODO:
- There are a few charms that are explicitly excluded - these probably belong in a configuration file.
- Handle more types of dependency patching for using the latest version of ops.
- Need to do more with the actual results, not just check that everything was ok. For example, how many tests were collected?
- Should be able to do the "--" thing so can do e.g. "-k some-common-thing"
- Should be able to target a subset of charms (maybe the above would do this?)
- Automate running this in a lxd (or whatever) VM, to decrease the risk.
- It would be good to also run the tests against scenario, pytest-operator (maybe others), even though those are not charms - figure out the best way to do that.
- It would be very handy to be able to say "compare this version of ops and this version and list the tests that fail/pass only in one case"
- Ideally, we could specify which version of Python to use in tox - this would require either adjusting the tox.ini file to specify the base Python or perhaps we just specify an exact path to tox, and rely on it being installed with the version we want?
- A lot of tests seem to fail with Python 3.12 - is this the charms, the tests, tox, super-tox, ... ?
- Maybe patch out pytest running in parallel, or at least how many workers? e.g. mysql-router-k8s does --numprocesses=120 and that is very taxing while running other charm tests in parallel as well
- When was the (main branch of the) repo last updated?
- Is the charm on charmhub? If so, when was it last published?
- Check 'definition of great'
- I think there's a bug in the monorepo handling where it thinks that the cache folder is a monorepo.
- It seems like mixing the charmhub info and the regular info would be informative.
- Should add the repo for the tutorial so we don't break that (and add repos for any other significant docs?)
- Can I hook up doctest to the super-tox type system?