You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In this project, I have utilized survival analysis models to see how the likelihood of the customer churn changes over time and to calculate customer LTV. I have also implemented the Random Forest model to predict if a customer is going to churn and deployed a model using the flask web app.
Customers in the telecom industry can choose from a variety of service providers and actively switch from one to the next. With the help of ML classification algorithms, we are going to predict the Churn.
Unlock actionable insights and boost customer retention with this Power BI project. Analyze and visualize risk factors to proactively prevent churn. ➡️
End to end projects-- Customer Churning prediction using Gradient Boost Classifier Algorithm perform pre-processing steps then fit data into the Algorithm and Hyper Parameter Tunning to reduce TN & FN value to perform our model to works with a new data. Finally deploying the model using Flask API
The Customer Churn table contains information on all 7,043 customers from a Telecommunications company in California in Q2 2022. We need to predict whether the customer will churn, stay or join the company based on the parameters of the dataset.
This project aims to predict customer churn using machine learning techniques. By analyzing historical customer data, the model identifies patterns that indicate whether a customer is likely to leave. This can help businesses take proactive measures to retain customers and reduce churn rates.
Telco Churn Analysis and Modeling is a comprehensive project focused on understanding and predicting customer churn in the telecommunications industry. Utilizing advanced data analysis and machine learning techniques, this project aims to provide insights into customer behavior and help develop effective strategies for customer
Extensive EDA of the IBM telco customer churn dataset, implemented various statistical hypotheses tests and Performed single-level Stacking Ensemble and tuned hyperparameters using Optuna.
Predict and prevent customer churn in the telecom industry with our advanced analytics and Machine Learning project. Uncover key factors driving churn and gain valuable insights into customer behavior with interactive Power BI visualizations. Empower your decision-making process with data-driven strategies and improve customer retention.