You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Python-written project that utilizes Time Series analysis, along with a Linear Regression model, to forecast the price of the Japanese Yen vs. the US Dollar. ARMA, ARIMA, and GARCH forecasting models included, as well as decomposition using the Hodrick-Prescott filter. In-Sample and Out-of-Sample performance metrics used to evaluate Linear Regre…
Filters (kalman, hodrick-prescott, moving average) together with comparison and sensitivity analysis (in notebook filters_with_parameters)+var analysis and granger causality test. Test for random walk (CE currencies using yfinance API)
This project uses the many time-series tools (Hodrick-Prescott Filter, ARMA, ARIMA and GARCH models, linear regression, etc.) to predict future movements in the value of the Japanese yen versus the U.S. dollar.
In this notebook, I've loaded historical Dollar-Yen exchange rate futures data. I've applied time series analysis and modeling to determine whether there is any predictable behavior.
This project aims to predict future yen prices using time-series models such as ARIMA as well as making out of sample and in sample predictions on Python