You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When signaficant amount of data are missing, what can we do? Impute the missing data with mean or median? Actually, Scikit-Learn provides two powerful imputers, KNNImputer and IterativeImputer, which can do this work effectively.
A loja de moda InStyle é uma grande loja de roupas, mas enfrenta desafios significativos em relação à experiência do cliente. Em vista disso, a InStyle montou uma equipe com a tarefa de treinar um algoritmo para classificar os clientes em satisfeitos e insatiseitos a fim de agir rápido e reverter a situação.
while we load the dataset we get some missing values from dataset. so to replace the missing values we use a technique in Machine Learning called Imputation. Imputation --- 1. SimpleImputer 2.KNNImputer
House prices dataset exploration and prediction. Workflow includes useful examples of Tensorflow pipelines including k-Nearest Neighbors imputer, Decision Tree Regression and XGBoost Regression