You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
An attempt at the network anomaly detection task using manually implemented k-means, spectral clustering and DBSCAN algorithms, with manually implemented evaluation metrics (precision, recall, f1-score and conditional entropy) used to evaluate these algorithms.
This project focuses on network anomaly detection due to the exponential growth of network traffic and the rise of various anomalies such as cyber attacks, network failures, and hardware malfunctions. This project implement clustering algorithms from scratch, including K-means, Spectral Clustering, Hierarchical Clustering, and DBSCAN