forked from p1atdev/LECO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prompt_util.py
160 lines (125 loc) · 4.72 KB
/
prompt_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from typing import Literal, Optional, Union
import yaml
from pathlib import Path
from pydantic import BaseModel, root_validator
import torch
ACTION_TYPES = Literal[
"erase",
"enhance",
]
# XL は二種類必要なので
class PromptEmbedsXL:
text_embeds: torch.FloatTensor
pooled_embeds: torch.FloatTensor
def __init__(self, *args) -> None:
self.text_embeds = args[0]
self.pooled_embeds = args[1]
# SDv1.x, SDv2.x は FloatTensor、XL は PromptEmbedsXL
PROMPT_EMBEDDING = Union[torch.FloatTensor, PromptEmbedsXL]
class PromptEmbedsCache: # 使いまわしたいので
prompts: dict[str, PROMPT_EMBEDDING] = {}
def __setitem__(self, __name: str, __value: PROMPT_EMBEDDING) -> None:
self.prompts[__name] = __value
def __getitem__(self, __name: str) -> Optional[PROMPT_EMBEDDING]:
if __name in self.prompts:
return self.prompts[__name]
else:
return None
class PromptSettings(BaseModel): # yaml のやつ
target: str
positive: str = None # if None, target will be used
unconditional: str = "" # default is ""
neutral: str = None # if None, unconditional will be used
action: ACTION_TYPES = "erase" # default is "erase"
guidance_scale: float = 1.0 # default is 1.0
resolution: int = 512 # default is 512
dynamic_resolution: bool = False # default is False
batch_size: int = 1 # default is 1
dynamic_crops: bool = False # default is False. only used when model is XL
@root_validator(pre=True)
def fill_prompts(cls, values):
keys = values.keys()
if "target" not in keys:
raise ValueError("target must be specified")
if "positive" not in keys:
values["positive"] = values["target"]
if "unconditional" not in keys:
values["unconditional"] = ""
if "neutral" not in keys:
values["neutral"] = values["unconditional"]
return values
class PromptEmbedsPair:
target: PROMPT_EMBEDDING # not want to generate the concept
positive: PROMPT_EMBEDDING # generate the concept
unconditional: PROMPT_EMBEDDING # uncondition (default should be empty)
neutral: PROMPT_EMBEDDING # base condition (default should be empty)
guidance_scale: float
resolution: int
dynamic_resolution: bool
batch_size: int
dynamic_crops: bool
loss_fn: torch.nn.Module
action: ACTION_TYPES
def __init__(
self,
loss_fn: torch.nn.Module,
target: PROMPT_EMBEDDING,
positive: PROMPT_EMBEDDING,
unconditional: PROMPT_EMBEDDING,
neutral: PROMPT_EMBEDDING,
settings: PromptSettings,
) -> None:
self.loss_fn = loss_fn
self.target = target
self.positive = positive
self.unconditional = unconditional
self.neutral = neutral
self.guidance_scale = settings.guidance_scale
self.resolution = settings.resolution
self.dynamic_resolution = settings.dynamic_resolution
self.batch_size = settings.batch_size
self.dynamic_crops = settings.dynamic_crops
self.action = settings.action
def _erase(
self,
target_latents: torch.FloatTensor, # "van gogh"
positive_latents: torch.FloatTensor, # "van gogh"
unconditional_latents: torch.FloatTensor, # ""
neutral_latents: torch.FloatTensor, # ""
) -> torch.FloatTensor:
"""Target latents are going not to have the positive concept."""
return self.loss_fn(
target_latents,
neutral_latents
- self.guidance_scale * (positive_latents - unconditional_latents),
)
def _enhance(
self,
target_latents: torch.FloatTensor, # "van gogh"
positive_latents: torch.FloatTensor, # "van gogh"
unconditional_latents: torch.FloatTensor, # ""
neutral_latents: torch.FloatTensor, # ""
):
"""Target latents are going to have the positive concept."""
return self.loss_fn(
target_latents,
neutral_latents
+ self.guidance_scale * (positive_latents - unconditional_latents),
)
def loss(
self,
**kwargs,
):
if self.action == "erase":
return self._erase(**kwargs)
elif self.action == "enhance":
return self._enhance(**kwargs)
else:
raise ValueError("action must be erase or enhance")
def load_prompts_from_yaml(path: str | Path) -> list[PromptSettings]:
with open(path, "r") as f:
prompts = yaml.safe_load(f)
if len(prompts) == 0:
raise ValueError("prompts file is empty")
prompt_settings = [PromptSettings(**prompt) for prompt in prompts]
return prompt_settings