forked from p1atdev/LECO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_util.py
416 lines (334 loc) · 13.5 KB
/
train_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
from typing import Optional, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import UNet2DConditionModel, SchedulerMixin
from model_util import SDXL_TEXT_ENCODER_TYPE
from tqdm import tqdm
UNET_IN_CHANNELS = 4 # Stable Diffusion の in_channels は 4 で固定。XLも同じ。
VAE_SCALE_FACTOR = 8 # 2 ** (len(vae.config.block_out_channels) - 1) = 8
UNET_ATTENTION_TIME_EMBED_DIM = 256 # XL
TEXT_ENCODER_2_PROJECTION_DIM = 1280
UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM = 2816
def get_random_noise(
batch_size: int, height: int, width: int, generator: torch.Generator = None
) -> torch.Tensor:
return torch.randn(
(
batch_size,
UNET_IN_CHANNELS,
height // VAE_SCALE_FACTOR, # 縦と横これであってるのかわからないけど、どっちにしろ大きな問題は発生しないのでこれでいいや
width // VAE_SCALE_FACTOR,
),
generator=generator,
device="cpu",
)
# https://www.crosslabs.org/blog/diffusion-with-offset-noise
def apply_noise_offset(latents: torch.FloatTensor, noise_offset: float):
latents = latents + noise_offset * torch.randn(
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device
)
return latents
def get_initial_latents(
scheduler: SchedulerMixin,
n_imgs: int,
height: int,
width: int,
n_prompts: int,
generator=None,
) -> torch.Tensor:
noise = get_random_noise(n_imgs, height, width, generator=generator).repeat(
n_prompts, 1, 1, 1
)
latents = noise * scheduler.init_noise_sigma
return latents
def text_tokenize(
tokenizer: CLIPTokenizer, # 普通ならひとつ、XLならふたつ!
prompts: list[str],
):
return tokenizer(
prompts,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
def text_encode(text_encoder: CLIPTextModel, tokens):
return text_encoder(tokens.to(text_encoder.device))[0]
def encode_prompts(
tokenizer: CLIPTokenizer,
text_encoder: CLIPTokenizer,
prompts: list[str],
):
text_tokens = text_tokenize(tokenizer, prompts)
text_embeddings = text_encode(text_encoder, text_tokens)
return text_embeddings
# https://github.com/huggingface/diffusers/blob/78922ed7c7e66c20aa95159c7b7a6057ba7d590d/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L334-L348
def text_encode_xl(
text_encoder: SDXL_TEXT_ENCODER_TYPE,
tokens: torch.FloatTensor,
num_images_per_prompt: int = 1,
):
prompt_embeds = text_encoder(
tokens.to(text_encoder.device), output_hidden_states=True
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2] # always penultimate layer
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
return prompt_embeds, pooled_prompt_embeds
def encode_prompts_xl(
tokenizers: list[CLIPTokenizer],
text_encoders: list[SDXL_TEXT_ENCODER_TYPE],
prompts: list[str],
num_images_per_prompt: int = 1,
) -> tuple[torch.FloatTensor, torch.FloatTensor]:
# text_encoder and text_encoder_2's penuultimate layer's output
text_embeds_list = []
pooled_text_embeds = None # always text_encoder_2's pool
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_tokens_input_ids = text_tokenize(tokenizer, prompts)
text_embeds, pooled_text_embeds = text_encode_xl(
text_encoder, text_tokens_input_ids, num_images_per_prompt
)
text_embeds_list.append(text_embeds)
bs_embed = pooled_text_embeds.shape[0]
pooled_text_embeds = pooled_text_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return torch.concat(text_embeds_list, dim=-1), pooled_text_embeds
def concat_embeddings(
unconditional: torch.FloatTensor,
conditional: torch.FloatTensor,
n_imgs: int,
):
return torch.cat([unconditional, conditional]).repeat_interleave(n_imgs, dim=0)
# ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L721
def predict_noise(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
timestep: int, # 現在のタイムステップ
latents: torch.FloatTensor,
text_embeddings: torch.FloatTensor, # uncond な text embed と cond な text embed を結合したもの
guidance_scale=7.5,
) -> torch.FloatTensor:
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)
# predict the noise residual
noise_pred = unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeddings,
).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
guided_target = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return guided_target
# ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L746
@torch.no_grad()
def diffusion(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
latents: torch.FloatTensor, # ただのノイズだけのlatents
text_embeddings: torch.FloatTensor,
total_timesteps: int = 1000,
start_timesteps=0,
**kwargs,
):
# latents_steps = []
for timestep in tqdm(scheduler.timesteps[start_timesteps:total_timesteps]):
noise_pred = predict_noise(
unet, scheduler, timestep, latents, text_embeddings, **kwargs
)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, timestep, latents).prev_sample
# return latents_steps
return latents
def rescale_noise_cfg(
noise_cfg: torch.FloatTensor, noise_pred_text, guidance_rescale=0.0
):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(
dim=list(range(1, noise_pred_text.ndim)), keepdim=True
)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = (
guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
)
return noise_cfg
def predict_noise_xl(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
timestep: int, # 現在のタイムステップ
latents: torch.FloatTensor,
text_embeddings: torch.FloatTensor, # uncond な text embed と cond な text embed を結合したもの
add_text_embeddings: torch.FloatTensor, # pooled なやつ
add_time_ids: torch.FloatTensor,
guidance_scale=7.5,
guidance_rescale=0.7,
) -> torch.FloatTensor:
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)
added_cond_kwargs = {
"text_embeds": add_text_embeddings,
"time_ids": add_time_ids,
}
# predict the noise residual
noise_pred = unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeddings,
added_cond_kwargs=added_cond_kwargs,
).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
guided_target = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
noise_pred = rescale_noise_cfg(
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
)
return guided_target
@torch.no_grad()
def diffusion_xl(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
latents: torch.FloatTensor, # ただのノイズだけのlatents
text_embeddings: tuple[torch.FloatTensor, torch.FloatTensor],
add_text_embeddings: torch.FloatTensor, # pooled なやつ
add_time_ids: torch.FloatTensor,
guidance_scale: float = 1.0,
total_timesteps: int = 1000,
start_timesteps=0,
):
# latents_steps = []
for timestep in tqdm(scheduler.timesteps[start_timesteps:total_timesteps]):
noise_pred = predict_noise_xl(
unet,
scheduler,
timestep,
latents,
text_embeddings,
add_text_embeddings,
add_time_ids,
guidance_scale=guidance_scale,
guidance_rescale=0.7,
)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, timestep, latents).prev_sample
# return latents_steps
return latents
# for XL
def get_add_time_ids(
height: int,
width: int,
dynamic_crops: bool = False,
dtype: torch.dtype = torch.float32,
):
if dynamic_crops:
# random float scale between 1 and 3
random_scale = torch.rand(1).item() * 2 + 1
original_size = (int(height * random_scale), int(width * random_scale))
# random position
crops_coords_top_left = (
torch.randint(0, original_size[0] - height, (1,)).item(),
torch.randint(0, original_size[1] - width, (1,)).item(),
)
target_size = (height, width)
else:
original_size = (height, width)
crops_coords_top_left = (0, 0)
target_size = (height, width)
# this is expected as 6
add_time_ids = list(original_size + crops_coords_top_left + target_size)
# this is expected as 2816
passed_add_embed_dim = (
UNET_ATTENTION_TIME_EMBED_DIM * len(add_time_ids) # 256 * 6
+ TEXT_ENCODER_2_PROJECTION_DIM # + 1280
)
if passed_add_embed_dim != UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM:
raise ValueError(
f"Model expects an added time embedding vector of length {UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
def get_optimizer(name: str):
name = name.lower()
if name.startswith("dadapt"):
import dadaptation
if name == "dadaptadam":
return dadaptation.DAdaptAdam
elif name == "dadaptlion":
return dadaptation.DAdaptLion
else:
raise ValueError("DAdapt optimizer must be dadaptadam or dadaptlion")
elif name.endswith("8bit"): # 検証してない
import bitsandbytes as bnb
if name == "adam8bit":
return bnb.optim.Adam8bit
elif name == "lion8bit":
return bnb.optim.Lion8bit
else:
raise ValueError("8bit optimizer must be adam8bit or lion8bit")
else:
if name == "adam":
return torch.optim.Adam
elif name == "adamw":
return torch.optim.AdamW
elif name == "lion":
from lion_pytorch import Lion
return Lion
elif name == "prodigy":
import prodigyopt
return prodigyopt.Prodigy
else:
raise ValueError("Optimizer must be adam, adamw, lion or Prodigy")
def get_lr_scheduler(
name: Optional[str],
optimizer: torch.optim.Optimizer,
max_iterations: Optional[int],
lr_min: Optional[float],
**kwargs,
):
if name == "cosine":
return torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=max_iterations, eta_min=lr_min, **kwargs
)
elif name == "cosine_with_restarts":
return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer, T_0=max_iterations // 10, T_mult=2, eta_min=lr_min, **kwargs
)
elif name == "step":
return torch.optim.lr_scheduler.StepLR(
optimizer, step_size=max_iterations // 100, gamma=0.999, **kwargs
)
elif name == "constant":
return torch.optim.lr_scheduler.ConstantLR(optimizer, factor=1, **kwargs)
elif name == "linear":
return torch.optim.lr_scheduler.LinearLR(
optimizer, factor=0.5, total_iters=max_iterations // 100, **kwargs
)
else:
raise ValueError(
"Scheduler must be cosine, cosine_with_restarts, step, linear or constant"
)
def get_random_resolution_in_bucket(bucket_resolution: int = 512) -> tuple[int, int]:
max_resolution = bucket_resolution
min_resolution = bucket_resolution // 2
step = 64
min_step = min_resolution // step
max_step = max_resolution // step
height = torch.randint(min_step, max_step, (1,)).item() * step
width = torch.randint(min_step, max_step, (1,)).item() * step
return height, width