forked from continue-revolution/sd-webui-animatediff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
motion_module.py
555 lines (444 loc) · 22.3 KB
/
motion_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from ldm.modules.attention import FeedForward
from einops import rearrange, repeat
import math
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
class MotionWrapper(nn.Module):
def __init__(self, mm_hash: str, using_v2: bool):
super().__init__()
if using_v2:
max_len = 32
else:
max_len = 24
self.down_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
for c in (320, 640, 1280, 1280):
self.down_blocks.append(MotionModule(c, max_len=max_len))
for c in (1280, 1280, 640, 320):
self.up_blocks.append(MotionModule(c, is_up=True, max_len=max_len))
if using_v2:
self.mid_block = MotionModule(1280, max_len=max_len, is_mid=using_v2)
self.mm_hash = mm_hash
self.using_v2 = using_v2
class MotionModule(nn.Module):
def __init__(self, in_channels, is_up=False, is_mid=False, max_len=24):
super().__init__()
if is_mid:
self.motion_modules = nn.ModuleList([get_motion_module(in_channels, max_len)])
else:
self.motion_modules = nn.ModuleList([get_motion_module(in_channels, max_len), get_motion_module(in_channels, max_len)])
if is_up:
self.motion_modules.append(get_motion_module(in_channels, max_len))
def get_motion_module(in_channels, max_len):
return VanillaTemporalModule(in_channels=in_channels, temporal_position_encoding_max_len=max_len)
class VanillaTemporalModule(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads = 8,
num_transformer_block = 1,
attention_block_types =( "Temporal_Self", "Temporal_Self" ),
cross_frame_attention_mode = None,
temporal_position_encoding = True,
temporal_position_encoding_max_len = 24,
temporal_attention_dim_div = 1,
zero_initialize = True,
):
super().__init__()
self.temporal_transformer = TemporalTransformer3DModel(
in_channels=in_channels,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
num_layers=num_transformer_block,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
)
if zero_initialize:
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
def forward(self, input_tensor, encoder_hidden_states, attention_mask=None):
return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask)
class TemporalTransformer3DModel(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads,
attention_head_dim,
num_layers,
attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
dropout = 0.0,
norm_num_groups = 32,
cross_attention_dim = 768,
activation_fn = "geglu",
attention_bias = False,
upcast_attention = False,
cross_frame_attention_mode = None,
temporal_position_encoding = False,
temporal_position_encoding_max_len = 24,
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
attention_block_types=attention_block_types,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
)
for d in range(num_layers)
]
)
self.proj_out = nn.Linear(inner_dim, in_channels)
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
video_length = hidden_states.shape[0] // 2 # TODO: config this value in scripts
batch, channel, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
hidden_states = self.proj_in(hidden_states)
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length)
# output
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
return output
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
dropout = 0.0,
norm_num_groups = 32,
cross_attention_dim = 768,
activation_fn = "geglu",
attention_bias = False,
upcast_attention = False,
cross_frame_attention_mode = None,
temporal_position_encoding = False,
temporal_position_encoding_max_len = 24,
):
super().__init__()
attention_blocks = []
norms = []
for block_name in attention_block_types:
attention_blocks.append(
VersatileAttention(
attention_mode=block_name.split("_")[0],
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
)
)
norms.append(nn.LayerNorm(dim))
self.attention_blocks = nn.ModuleList(attention_blocks)
self.norms = nn.ModuleList(norms)
self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn=='geglu'))
self.ff_norm = nn.LayerNorm(dim)
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
for attention_block, norm in zip(self.attention_blocks, self.norms):
norm_hidden_states = norm(hidden_states)
hidden_states = attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
video_length=video_length,
) + hidden_states
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
class PositionalEncoding(nn.Module):
def __init__(
self,
d_model,
dropout = 0.,
max_len = 24
):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class CrossAttention(nn.Module):
r"""
A cross attention layer.
Parameters:
query_dim (`int`): The number of channels in the query.
cross_attention_dim (`int`, *optional*):
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
bias (`bool`, *optional*, defaults to False):
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
"""
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias=False,
upcast_attention: bool = False,
upcast_softmax: bool = False,
added_kv_proj_dim: Optional[int] = None,
norm_num_groups: Optional[int] = None,
):
super().__init__()
inner_dim = dim_head * heads
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.scale = dim_head**-0.5
self.heads = heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self._slice_size = None
# self._use_memory_efficient_attention_xformers = shared.xformers_available
self._use_memory_efficient_attention_xformers = False
self.added_kv_proj_dim = added_kv_proj_dim
if norm_num_groups is not None:
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
else:
self.group_norm = None
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
if self.added_kv_proj_dim is not None:
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim))
self.to_out.append(nn.Dropout(dropout))
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def set_attention_slice(self, slice_size):
if slice_size is not None and slice_size > self.sliceable_head_dim:
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
self._slice_size = slice_size
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
encoder_hidden_states = encoder_hidden_states
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
if self.added_kv_proj_dim is not None:
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj)
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj)
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)
else:
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
# attention, what we cannot get enough of
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value, attention_mask)
else:
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
def _attention(self, query, key, value, attention_mask=None):
if self.upcast_attention:
query = query.float()
key = key.float()
attention_scores = torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
if self.upcast_softmax:
attention_scores = attention_scores.float()
attention_probs = attention_scores.softmax(dim=-1)
# cast back to the original dtype
attention_probs = attention_probs.to(value.dtype)
# compute attention output
hidden_states = torch.bmm(attention_probs, value)
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask):
batch_size_attention = query.shape[0]
hidden_states = torch.zeros(
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
)
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
for i in range(hidden_states.shape[0] // slice_size):
start_idx = i * slice_size
end_idx = (i + 1) * slice_size
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
if self.upcast_attention:
query_slice = query_slice.float()
key_slice = key_slice.float()
attn_slice = torch.baddbmm(
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
query_slice,
key_slice.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
if attention_mask is not None:
attn_slice = attn_slice + attention_mask[start_idx:end_idx]
if self.upcast_softmax:
attn_slice = attn_slice.float()
attn_slice = attn_slice.softmax(dim=-1)
# cast back to the original dtype
attn_slice = attn_slice.to(value.dtype)
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
# TODO attention_mask
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
import xformers.ops
from modules.sd_hijack_optimizations import get_xformers_flash_attention_op
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask,
op=get_xformers_flash_attention_op(query, key, value))
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
class VersatileAttention(CrossAttention):
def __init__(
self,
attention_mode = None,
cross_frame_attention_mode = None,
temporal_position_encoding = False,
temporal_position_encoding_max_len = 24,
*args, **kwargs
):
super().__init__(*args, **kwargs)
assert attention_mode == "Temporal"
self.attention_mode = attention_mode
self.is_cross_attention = kwargs["cross_attention_dim"] is not None
self.pos_encoder = PositionalEncoding(
kwargs["query_dim"],
dropout=0.,
max_len=temporal_position_encoding_max_len
) if (temporal_position_encoding and attention_mode == "Temporal") else None
def extra_repr(self):
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
batch_size, sequence_length, _ = hidden_states.shape
if self.attention_mode == "Temporal":
d = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
if self.pos_encoder is not None:
hidden_states = self.pos_encoder(hidden_states)
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states
else:
raise NotImplementedError
encoder_hidden_states = encoder_hidden_states
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
if self.added_kv_proj_dim is not None:
raise NotImplementedError
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
# attention, what we cannot get enough of
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value, attention_mask)
else:
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
if self.attention_mode == "Temporal":
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states