-
Notifications
You must be signed in to change notification settings - Fork 1
/
args.py
28 lines (28 loc) · 1.96 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
def add_common_train_args(parser):
parser.add_argument('--episodes', type=int, default=1000, metavar='E',
help='number of episodes to train (default: 1000)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor (default: 0.99)')
parser.add_argument('--seed', type=int, default=543, metavar='N',
help='random seed (default: 543)')
parser.add_argument('--render', action='store_true',
help='render the environment')
parser.add_argument('--evaluation-interval', type=int, default=100, metavar='E',
help='interval between evaluation runs (default: 100)')
parser.add_argument('--evaluation-games', type=int, default=100, metavar='EG',
help='how many games to play to check win rate during training (default: 100)')
parser.add_argument('--bins', type=int, default=6, metavar='B',
help='bins of the Kalah board (default: 6)')
parser.add_argument('--seeds', type=int, default=4, metavar='S',
help='seeds of the Kalah board (default: 4)')
parser.add_argument('--learning-rate', type=float, default=0.01, metavar='L',
help='learning rate (default: 0.01)')
parser.add_argument('--solved', type=float, default=95, metavar='SL',
help='consider problem solved when agent wins x percent of the games (default: 95)')
parser.add_argument('--neurons', type=int, default=512, metavar='NE',
help='how many neurons in each layer (default: 512)')
parser.add_argument('--run-id', type=str, required=True, metavar='RUN_ID',
help='the identifier for the training run.')
parser.add_argument('--force', dest='force', action='store_const',
const=True, default=False,
help='force overwrite already existing results')