forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBlackScholes.cu
243 lines (206 loc) · 9.06 KB
/
BlackScholes.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample evaluates fair call and put prices for a
* given set of European options by Black-Scholes formula.
* See supplied whitepaper for more explanations.
*/
#include <helper_functions.h> // helper functions for string parsing
#include <helper_cuda.h> // helper functions CUDA error checking and initialization
////////////////////////////////////////////////////////////////////////////////
// Process an array of optN options on CPU
////////////////////////////////////////////////////////////////////////////////
extern "C" void BlackScholesCPU(float *h_CallResult, float *h_PutResult,
float *h_StockPrice, float *h_OptionStrike,
float *h_OptionYears, float Riskfree,
float Volatility, int optN);
////////////////////////////////////////////////////////////////////////////////
// Process an array of OptN options on GPU
////////////////////////////////////////////////////////////////////////////////
#include "BlackScholes_kernel.cuh"
////////////////////////////////////////////////////////////////////////////////
// Helper function, returning uniformly distributed
// random float in [low, high] range
////////////////////////////////////////////////////////////////////////////////
float RandFloat(float low, float high) {
float t = (float)rand() / (float)RAND_MAX;
return (1.0f - t) * low + t * high;
}
////////////////////////////////////////////////////////////////////////////////
// Data configuration
////////////////////////////////////////////////////////////////////////////////
const int OPT_N = 4000000;
const int NUM_ITERATIONS = 512;
const int OPT_SZ = OPT_N * sizeof(float);
const float RISKFREE = 0.02f;
const float VOLATILITY = 0.30f;
#define DIV_UP(a, b) (((a) + (b)-1) / (b))
////////////////////////////////////////////////////////////////////////////////
// Main program
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
// Start logs
printf("[%s] - Starting...\n", argv[0]);
//'h_' prefix - CPU (host) memory space
float
// Results calculated by CPU for reference
*h_CallResultCPU,
*h_PutResultCPU,
// CPU copy of GPU results
*h_CallResultGPU, *h_PutResultGPU,
// CPU instance of input data
*h_StockPrice, *h_OptionStrike, *h_OptionYears;
//'d_' prefix - GPU (device) memory space
float
// Results calculated by GPU
*d_CallResult,
*d_PutResult,
// GPU instance of input data
*d_StockPrice, *d_OptionStrike, *d_OptionYears;
double delta, ref, sum_delta, sum_ref, max_delta, L1norm, gpuTime;
StopWatchInterface *hTimer = NULL;
int i;
findCudaDevice(argc, (const char **)argv);
sdkCreateTimer(&hTimer);
printf("Initializing data...\n");
printf("...allocating CPU memory for options.\n");
h_CallResultCPU = (float *)malloc(OPT_SZ);
h_PutResultCPU = (float *)malloc(OPT_SZ);
h_CallResultGPU = (float *)malloc(OPT_SZ);
h_PutResultGPU = (float *)malloc(OPT_SZ);
h_StockPrice = (float *)malloc(OPT_SZ);
h_OptionStrike = (float *)malloc(OPT_SZ);
h_OptionYears = (float *)malloc(OPT_SZ);
printf("...allocating GPU memory for options.\n");
checkCudaErrors(cudaMalloc((void **)&d_CallResult, OPT_SZ));
checkCudaErrors(cudaMalloc((void **)&d_PutResult, OPT_SZ));
checkCudaErrors(cudaMalloc((void **)&d_StockPrice, OPT_SZ));
checkCudaErrors(cudaMalloc((void **)&d_OptionStrike, OPT_SZ));
checkCudaErrors(cudaMalloc((void **)&d_OptionYears, OPT_SZ));
printf("...generating input data in CPU mem.\n");
srand(5347);
// Generate options set
for (i = 0; i < OPT_N; i++) {
h_CallResultCPU[i] = 0.0f;
h_PutResultCPU[i] = -1.0f;
h_StockPrice[i] = RandFloat(5.0f, 30.0f);
h_OptionStrike[i] = RandFloat(1.0f, 100.0f);
h_OptionYears[i] = RandFloat(0.25f, 10.0f);
}
printf("...copying input data to GPU mem.\n");
// Copy options data to GPU memory for further processing
checkCudaErrors(
cudaMemcpy(d_StockPrice, h_StockPrice, OPT_SZ, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_OptionStrike, h_OptionStrike, OPT_SZ,
cudaMemcpyHostToDevice));
checkCudaErrors(
cudaMemcpy(d_OptionYears, h_OptionYears, OPT_SZ, cudaMemcpyHostToDevice));
printf("Data init done.\n\n");
printf("Executing Black-Scholes GPU kernel (%i iterations)...\n",
NUM_ITERATIONS);
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&hTimer);
sdkStartTimer(&hTimer);
for (i = 0; i < NUM_ITERATIONS; i++) {
BlackScholesGPU<<<DIV_UP((OPT_N / 2), 128), 128 /*480, 128*/>>>(
(float2 *)d_CallResult, (float2 *)d_PutResult, (float2 *)d_StockPrice,
(float2 *)d_OptionStrike, (float2 *)d_OptionYears, RISKFREE, VOLATILITY,
OPT_N);
getLastCudaError("BlackScholesGPU() execution failed\n");
}
checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&hTimer);
gpuTime = sdkGetTimerValue(&hTimer) / NUM_ITERATIONS;
// Both call and put is calculated
printf("Options count : %i \n", 2 * OPT_N);
printf("BlackScholesGPU() time : %f msec\n", gpuTime);
printf("Effective memory bandwidth: %f GB/s\n",
((double)(5 * OPT_N * sizeof(float)) * 1E-9) / (gpuTime * 1E-3));
printf("Gigaoptions per second : %f \n\n",
((double)(2 * OPT_N) * 1E-9) / (gpuTime * 1E-3));
printf(
"BlackScholes, Throughput = %.4f GOptions/s, Time = %.5f s, Size = %u "
"options, NumDevsUsed = %u, Workgroup = %u\n",
(((double)(2.0 * OPT_N) * 1.0E-9) / (gpuTime * 1.0E-3)), gpuTime * 1e-3,
(2 * OPT_N), 1, 128);
printf("\nReading back GPU results...\n");
// Read back GPU results to compare them to CPU results
checkCudaErrors(cudaMemcpy(h_CallResultGPU, d_CallResult, OPT_SZ,
cudaMemcpyDeviceToHost));
checkCudaErrors(
cudaMemcpy(h_PutResultGPU, d_PutResult, OPT_SZ, cudaMemcpyDeviceToHost));
printf("Checking the results...\n");
printf("...running CPU calculations.\n\n");
// Calculate options values on CPU
BlackScholesCPU(h_CallResultCPU, h_PutResultCPU, h_StockPrice, h_OptionStrike,
h_OptionYears, RISKFREE, VOLATILITY, OPT_N);
printf("Comparing the results...\n");
// Calculate max absolute difference and L1 distance
// between CPU and GPU results
sum_delta = 0;
sum_ref = 0;
max_delta = 0;
for (i = 0; i < OPT_N; i++) {
ref = h_CallResultCPU[i];
delta = fabs(h_CallResultCPU[i] - h_CallResultGPU[i]);
if (delta > max_delta) {
max_delta = delta;
}
sum_delta += delta;
sum_ref += fabs(ref);
}
L1norm = sum_delta / sum_ref;
printf("L1 norm: %E\n", L1norm);
printf("Max absolute error: %E\n\n", max_delta);
printf("Shutting down...\n");
printf("...releasing GPU memory.\n");
checkCudaErrors(cudaFree(d_OptionYears));
checkCudaErrors(cudaFree(d_OptionStrike));
checkCudaErrors(cudaFree(d_StockPrice));
checkCudaErrors(cudaFree(d_PutResult));
checkCudaErrors(cudaFree(d_CallResult));
printf("...releasing CPU memory.\n");
free(h_OptionYears);
free(h_OptionStrike);
free(h_StockPrice);
free(h_PutResultGPU);
free(h_CallResultGPU);
free(h_PutResultCPU);
free(h_CallResultCPU);
sdkDeleteTimer(&hTimer);
printf("Shutdown done.\n");
printf("\n[BlackScholes] - Test Summary\n");
if (L1norm > 1e-6) {
printf("Test failed!\n");
exit(EXIT_FAILURE);
}
printf(
"\nNOTE: The CUDA Samples are not meant for performance measurements. "
"Results may vary when GPU Boost is enabled.\n\n");
printf("Test passed\n");
exit(EXIT_SUCCESS);
}