forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsobol.cpp
305 lines (261 loc) · 10.4 KB
/
sobol.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Portions Copyright (c) 2009 Mike Giles, Oxford University. All rights
* reserved.
* Portions Copyright (c) 2008 Frances Y. Kuo and Stephen Joe. All rights
* reserved.
*
* Sobol Quasi-random Number Generator example
*
* Based on CUDA code submitted by Mike Giles, Oxford University, United Kingdom
* http://people.maths.ox.ac.uk/~gilesm/
*
* and C code developed by Stephen Joe, University of Waikato, New Zealand
* and Frances Kuo, University of New South Wales, Australia
* http://web.maths.unsw.edu.au/~fkuo/sobol/
*
* For theoretical background see:
*
* P. Bratley and B.L. Fox.
* Implementing Sobol's quasirandom sequence generator
* http://portal.acm.org/citation.cfm?id=42288
* ACM Trans. on Math. Software, 14(1):88-100, 1988
*
* S. Joe and F. Kuo.
* Remark on algorithm 659: implementing Sobol's quasirandom sequence generator.
* http://portal.acm.org/citation.cfm?id=641879
* ACM Trans. on Math. Software, 29(1):49-57, 2003
*/
#include <iostream>
#include <cuda_runtime.h> // CUDA Runtime Functions
#include <helper_cuda.h> // helper functions for CUDA error checking and initialization
#include <helper_functions.h> // helper functions
#include <stdexcept>
#include <math.h>
#include "sobol.h"
#include "sobol_gold.h"
#include "sobol_gpu.h"
#define L1ERROR_TOLERANCE (1e-6)
const char *sSDKsample = "Sobol Quasi-Random Number Generator";
void printHelp(int argc, char *argv[]) {
if (argc > 0) {
std::cout << "\nUsage: " << argv[0] << " <options>\n\n";
} else {
std::cout << "\nUsage: <program name> <options>\n\n";
}
std::cout << "\t--vectors=M specify number of vectors (required)\n";
std::cout << "\t The generator will output M vectors\n\n";
std::cout << "\t--dimensions=N specify number of dimensions (required)\n";
std::cout << "\t Each vector will consist of N components\n\n";
std::cout << std::endl;
}
int main(int argc, char *argv[]) {
bool ok = true;
// We will generate n_vectors vectors of n_dimensions numbers
int n_vectors = 100000;
int n_dimensions = 100;
printf("%s Starting...\n\n", sSDKsample);
// Print help if requested
if (checkCmdLineFlag(argc, (const char **)argv, "help")) {
printHelp(argc, argv);
return 0;
}
if (checkCmdLineFlag(argc, (const char **)argv, "qatest")) {
// For QA testing set a default number of vectors and dimensions
n_vectors = 100000;
n_dimensions = 100;
} else {
// Parse the command line to determine the required number of vectors
if (checkCmdLineFlag(argc, (const char **)argv, "vectors")) {
n_vectors = getCmdLineArgumentInt(argc, (const char **)argv, "vectors");
if (n_vectors < 1) {
std::cerr << "Illegal argument: number of vectors must be positive "
"(--vectors=N)"
<< std::endl;
ok = false;
}
}
std::cout << "> number of vectors = " << n_vectors << std::endl;
// Parse the command line to determine the number of dimensions in each
// vector
if (checkCmdLineFlag(argc, (const char **)argv, "dimensions")) {
n_dimensions =
getCmdLineArgumentInt(argc, (const char **)argv, "dimensions");
if (n_dimensions < 1) {
std::cerr << "Illegal argument: number of dimensions must be positive "
"(--dimensions=N)"
<< std::endl;
ok = false;
}
}
std::cout << "> number of dimensions = " << n_dimensions << std::endl;
}
// If any of the command line checks failed, exit
if (!ok) {
return -1;
}
// Use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
findCudaDevice(argc, (const char **)argv);
// Create a timer to measure performance
StopWatchInterface *hTimer = NULL;
double time;
sdkCreateTimer(&hTimer);
// Allocate memory for the arrays
std::cout << "Allocating CPU memory..." << std::endl;
unsigned int *h_directions = 0;
float *h_outputCPU = 0;
float *h_outputGPU = 0;
try {
h_directions = new unsigned int[n_dimensions * n_directions];
h_outputCPU = new float[n_vectors * n_dimensions];
h_outputGPU = new float[n_vectors * n_dimensions];
} catch (std::exception e) {
std::cerr << "Caught exception: " << e.what() << std::endl;
std::cerr << "Unable to allocate CPU memory (try running with fewer "
"vectors/dimensions)"
<< std::endl;
exit(EXIT_FAILURE);
}
std::cout << "Allocating GPU memory..." << std::endl;
unsigned int *d_directions;
float *d_output;
try {
cudaError_t cudaResult;
cudaResult = cudaMalloc((void **)&d_directions,
n_dimensions * n_directions * sizeof(unsigned int));
if (cudaResult != cudaSuccess) {
throw std::runtime_error(cudaGetErrorString(cudaResult));
}
cudaResult = cudaMalloc((void **)&d_output,
n_vectors * n_dimensions * sizeof(float));
if (cudaResult != cudaSuccess) {
throw std::runtime_error(cudaGetErrorString(cudaResult));
}
} catch (std::runtime_error e) {
std::cerr << "Caught exception: " << e.what() << std::endl;
std::cerr << "Unable to allocate GPU memory (try running with fewer "
"vectors/dimensions)"
<< std::endl;
exit(EXIT_FAILURE);
}
// Initialize the direction numbers (done on the host)
std::cout << "Initializing direction numbers..." << std::endl;
initSobolDirectionVectors(n_dimensions, h_directions);
// Copy the direction numbers to the device
std::cout << "Copying direction numbers to device..." << std::endl;
checkCudaErrors(cudaMemcpy(d_directions, h_directions,
n_dimensions * n_directions * sizeof(unsigned int),
cudaMemcpyHostToDevice));
checkCudaErrors(cudaDeviceSynchronize());
// Execute the QRNG on the device
std::cout << "Executing QRNG on GPU..." << std::endl;
sdkResetTimer(&hTimer);
sdkStartTimer(&hTimer);
sobolGPU(n_vectors, n_dimensions, d_directions, d_output);
checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&hTimer);
time = sdkGetTimerValue(&hTimer);
if (time < 1e-6) {
std::cout << "Gsamples/s: problem size too small to measure, try "
"increasing number of vectors or dimensions"
<< std::endl;
} else {
std::cout << "Gsamples/s: "
<< (double)n_vectors * (double)n_dimensions * 1E-9 / (time * 1E-3)
<< std::endl;
}
std::cout << "Reading results from GPU..." << std::endl;
checkCudaErrors(cudaMemcpy(h_outputGPU, d_output,
n_vectors * n_dimensions * sizeof(float),
cudaMemcpyDeviceToHost));
std::cout << std::endl;
// Execute the QRNG on the host
std::cout << "Executing QRNG on CPU..." << std::endl;
sdkResetTimer(&hTimer);
sdkStartTimer(&hTimer);
sobolCPU(n_vectors, n_dimensions, h_directions, h_outputCPU);
sdkStopTimer(&hTimer);
time = sdkGetTimerValue(&hTimer);
if (time < 1e-6) {
std::cout << "Gsamples/s: problem size too small to measure, try "
"increasing number of vectors or dimensions"
<< std::endl;
} else {
std::cout << "Gsamples/s: "
<< (double)n_vectors * (double)n_dimensions * 1E-9 / (time * 1E-3)
<< std::endl;
}
// Check the results
std::cout << "Checking results..." << std::endl;
float l1norm_diff = 0.0F;
float l1norm_ref = 0.0F;
float l1error;
// Special case if n_vectors is 1, when the vector should be exactly 0
if (n_vectors == 1) {
for (int d = 0, v = 0; d < n_dimensions; d++) {
float ref = h_outputCPU[d * n_vectors + v];
l1norm_diff += fabs(h_outputGPU[d * n_vectors + v] - ref);
l1norm_ref += fabs(ref);
}
// Output the L1-Error
l1error = l1norm_diff;
if (l1norm_ref != 0) {
std::cerr << "Error: L1-Norm of the reference is not zero (for single "
"vector), golden generator appears broken\n";
} else {
std::cout << "L1-Error: " << l1error << std::endl;
}
} else {
for (int d = 0; d < n_dimensions; d++) {
for (int v = 0; v < n_vectors; v++) {
float ref = h_outputCPU[d * n_vectors + v];
l1norm_diff += fabs(h_outputGPU[d * n_vectors + v] - ref);
l1norm_ref += fabs(ref);
}
}
// Output the L1-Error
l1error = l1norm_diff / l1norm_ref;
if (l1norm_ref == 0) {
std::cerr << "Error: L1-Norm of the reference is zero, golden generator "
"appears broken\n";
} else {
std::cout << "L1-Error: " << l1error << std::endl;
}
}
// Cleanup and terminate
std::cout << "Shutting down..." << std::endl;
sdkDeleteTimer(&hTimer);
delete h_directions;
delete h_outputCPU;
delete h_outputGPU;
checkCudaErrors(cudaFree(d_directions));
checkCudaErrors(cudaFree(d_output));
// Check pass/fail using L1 error
exit(l1error < L1ERROR_TOLERANCE ? EXIT_SUCCESS : EXIT_FAILURE);
}