forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fluidsGLES_kernels.cu
356 lines (296 loc) · 12.7 KB
/
fluidsGLES_kernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <cufft.h> // CUDA FFT Libraries
#include <helper_cuda.h> // Helper functions for CUDA Error handling
// OpenGL Graphics includes
#include <GLES3/gl31.h>
// FluidsGLES CUDA kernel definitions
#include "fluidsGLES_kernels.cuh"
// Texture object for reading velocity field
cudaTextureObject_t texObj;
static cudaArray *array = NULL;
// Particle data
extern GLuint vbo; // OpenGL vertex buffer object
extern struct cudaGraphicsResource
*cuda_vbo_resource; // handles OpenGL-CUDA exchange
// Texture pitch
extern size_t tPitch;
extern cufftHandle planr2c;
extern cufftHandle planc2r;
cData *vxfield = NULL;
cData *vyfield = NULL;
void setupTexture(int x, int y) {
cudaChannelFormatDesc desc = cudaCreateChannelDesc<float2>();
cudaMallocArray(&array, &desc, y, x);
getLastCudaError("cudaMalloc failed");
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = array;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = false;
texDescr.filterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeWrap;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(cudaCreateTextureObject(&texObj, &texRes, &texDescr, NULL));
}
void updateTexture(cData *data, size_t wib, size_t h, size_t pitch) {
checkCudaErrors(cudaMemcpy2DToArray(array, 0, 0, data, pitch, wib, h,
cudaMemcpyDeviceToDevice));
}
void deleteTexture(void) {
checkCudaErrors(cudaDestroyTextureObject(texObj));
checkCudaErrors(cudaFreeArray(array));
}
// Note that these kernels are designed to work with arbitrary
// domain sizes, not just domains that are multiples of the tile
// size. Therefore, we have extra code that checks to make sure
// a given thread location falls within the domain boundaries in
// both X and Y. Also, the domain is covered by looping over
// multiple elements in the Y direction, while there is a one-to-one
// mapping between threads in X and the tile size in X.
// Nolan Goodnight 9/22/06
// This method adds constant force vectors to the velocity field
// stored in 'v' according to v(x,t+1) = v(x,t) + dt * f.
__global__ void addForces_k(cData *v, int dx, int dy, int spx, int spy,
float fx, float fy, int r, size_t pitch) {
int tx = threadIdx.x;
int ty = threadIdx.y;
cData *fj = (cData *)((char *)v + (ty + spy) * pitch) + tx + spx;
cData vterm = *fj;
tx -= r;
ty -= r;
float s = 1.f / (1.f + tx * tx * tx * tx + ty * ty * ty * ty);
vterm.x += s * fx;
vterm.y += s * fy;
*fj = vterm;
}
// This method performs the velocity advection step, where we
// trace velocity vectors back in time to update each grid cell.
// That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear
// interpolation in the velocity space.
__global__ void advectVelocity_k(cData *v, float *vx, float *vy, int dx,
int pdx, int dy, float dt, int lb,
cudaTextureObject_t texObject) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
cData vterm, ploc;
float vxterm, vyterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * pdx + gtidx;
vterm = tex2D<cData>(texObject, (float)gtidx, (float)fi);
ploc.x = (gtidx + 0.5f) - (dt * vterm.x * dx);
ploc.y = (fi + 0.5f) - (dt * vterm.y * dy);
vterm = tex2D<cData>(texObject, ploc.x, ploc.y);
vxterm = vterm.x;
vyterm = vterm.y;
vx[fj] = vxterm;
vy[fj] = vyterm;
}
}
}
}
// This method performs velocity diffusion and forces mass conservation
// in the frequency domain. The inputs 'vx' and 'vy' are complex-valued
// arrays holding the Fourier coefficients of the velocity field in
// X and Y. Diffusion in this space takes a simple form described as:
// v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity,
// and k is the wavenumber. The projection step forces the Fourier
// velocity vectors to be orthogonal to the vectors for each
// wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2.
__global__ void diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt,
float visc, int lb) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
cData xterm, yterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * dx + gtidx;
xterm = vx[fj];
yterm = vy[fj];
// Compute the index of the wavenumber based on the
// data order produced by a standard NN FFT.
int iix = gtidx;
int iiy = (fi > dy / 2) ? (fi - (dy)) : fi;
// Velocity diffusion
float kk = (float)(iix * iix + iiy * iiy); // k^2
float diff = 1.f / (1.f + visc * dt * kk);
xterm.x *= diff;
xterm.y *= diff;
yterm.x *= diff;
yterm.y *= diff;
// Velocity projection
if (kk > 0.f) {
float rkk = 1.f / kk;
// Real portion of velocity projection
float rkp = (iix * xterm.x + iiy * yterm.x);
// Imaginary portion of velocity projection
float ikp = (iix * xterm.y + iiy * yterm.y);
xterm.x -= rkk * rkp * iix;
xterm.y -= rkk * ikp * iix;
yterm.x -= rkk * rkp * iiy;
yterm.y -= rkk * ikp * iiy;
}
vx[fj] = xterm;
vy[fj] = yterm;
}
}
}
}
// This method updates the velocity field 'v' using the two complex
// arrays from the previous step: 'vx' and 'vy'. Here we scale the
// real components by 1/(dx*dy) to account for an unnormalized FFT.
__global__ void updateVelocity_k(cData *v, float *vx, float *vy, int dx,
int pdx, int dy, int lb, size_t pitch) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
float vxterm, vyterm;
cData nvterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fjr = fi * pdx + gtidx;
vxterm = vx[fjr];
vyterm = vy[fjr];
// Normalize the result of the inverse FFT
float scale = 1.f / (dx * dy);
nvterm.x = vxterm * scale;
nvterm.y = vyterm * scale;
cData *fj = (cData *)((char *)v + fi * pitch) + gtidx;
*fj = nvterm;
}
} // If this thread is inside the domain in Y
} // If this thread is inside the domain in X
}
// This method updates the particles by moving particle positions
// according to the velocity field and time step. That is, for each
// particle: p(t+1) = p(t) + dt * v(p(t)).
__global__ void advectParticles_k(cData *part, cData *v, int dx, int dy,
float dt, int lb, size_t pitch) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
// gtidx is the domain location in x for this thread
cData pterm, vterm;
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * dx + gtidx;
pterm = part[fj];
int xvi = ((int)(pterm.x * dx));
int yvi = ((int)(pterm.y * dy));
vterm = *((cData *)((char *)v + yvi * pitch) + xvi);
pterm.x += dt * vterm.x;
pterm.x = pterm.x - (int)pterm.x;
pterm.x += 1.f;
pterm.x = pterm.x - (int)pterm.x;
pterm.y += dt * vterm.y;
pterm.y = pterm.y - (int)pterm.y;
pterm.y += 1.f;
pterm.y = pterm.y - (int)pterm.y;
part[fj] = pterm;
}
} // If this thread is inside the domain in Y
} // If this thread is inside the domain in X
}
// These are the external function calls necessary for launching fluid simuation
extern "C" void addForces(cData *v, int dx, int dy, int spx, int spy, float fx,
float fy, int r) {
dim3 tids(2 * r + 1, 2 * r + 1);
addForces_k<<<1, tids>>>(v, dx, dy, spx, spy, fx, fy, r, tPitch);
getLastCudaError("addForces_k failed.");
}
extern "C" void advectVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
int dy, float dt) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
updateTexture(v, DIM * sizeof(cData), DIM, tPitch);
advectVelocity_k<<<grid, tids>>>(v, vx, vy, dx, pdx, dy, dt, TILEY / TIDSY,
texObj);
getLastCudaError("advectVelocity_k failed.");
}
extern "C" void diffuseProject(cData *vx, cData *vy, int dx, int dy, float dt,
float visc) {
// Forward FFT
checkCudaErrors(cufftExecR2C(planr2c, (cufftReal *)vx, (cufftComplex *)vx));
checkCudaErrors(cufftExecR2C(planr2c, (cufftReal *)vy, (cufftComplex *)vy));
uint3 grid = make_uint3((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1), 1);
uint3 tids = make_uint3(TIDSX, TIDSY, 1);
diffuseProject_k<<<grid, tids>>>(vx, vy, dx, dy, dt, visc, TILEY / TIDSY);
getLastCudaError("diffuseProject_k failed.");
// Inverse FFT
checkCudaErrors(cufftExecC2R(planc2r, (cufftComplex *)vx, (cufftReal *)vx));
checkCudaErrors(cufftExecC2R(planc2r, (cufftComplex *)vy, (cufftReal *)vy));
}
extern "C" void updateVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
int dy) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
updateVelocity_k<<<grid, tids>>>(v, vx, vy, dx, pdx, dy, TILEY / TIDSY,
tPitch);
getLastCudaError("updateVelocity_k failed.");
}
extern "C" void advectParticles(GLuint vbo, cData *v, int dx, int dy,
float dt) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
cData *p;
checkCudaErrors(cudaGraphicsMapResources(1, &cuda_vbo_resource, 0));
getLastCudaError("cudaGraphicsMapResources failed");
size_t num_bytes;
checkCudaErrors(cudaGraphicsResourceGetMappedPointer((void **)&p, &num_bytes,
cuda_vbo_resource));
getLastCudaError("cudaGraphicsResourceGetMappedPointer failed");
advectParticles_k<<<grid, tids>>>(p, v, dx, dy, dt, TILEY / TIDSY, tPitch);
getLastCudaError("advectParticles_k failed.");
checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_vbo_resource, 0));
}